

Abstract:

A new fixed-target experiment at the CERN SPS accelerator is being proposed that will use decays of charm mesons to search for Heavy Neutral Leptons (HNLs) and other hidden, very weakly interacting particles.

With the discovery of a light Higgs boson, the Standard Model could be a self-consistent effective field theory up to the Planck scale. In spite of the fact that the Standard Model is consistent with LHC experiments, it cannot be an ultimate theory of nature. It does not explain neutrino masses and oscillations, the baryon asymmetry of the universe, and there is no dark matter candidate.

I will discuss the theoretical motivations for such an experiment, its setup and sensitivity.

Expression of Interest: **Proposal to search for Heavy Neutral Leptons at the SPS** and other very weakly interacting long lived particles

http://ship.web.cern.ch/ship/

(CERN-SPSC-2013-024 / SPSC-EOI-010)

W. Bonivento^{1,2}, A. Boyarsky³, H. Dijkstra², U. Egede⁴, M. Ferro-Luzzi², B. Goddard², A. Golutvin⁴, D. Gorbunov⁵, R. Jacobsson², J. Panman², M. Patel⁴, O. Ruchayskiy⁶, T. Ruf², N. Serra⁷, M. Shaposhnikov⁶, D. Treille^{2 (‡)}

¹Sezione INFN di Cagliari, Cagliari, Italy

²European Organization for Nuclear Research (CERN), Geneva, Switzerland

³Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

⁴Imperial College London, London, United Kingdom

⁵Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

 $^{6} Ecole\ Polytechnique\ F\acute{e}d\acute{e}rale\ de\ Lausanne\ (EPFL),\ Lausanne,\ Switzerland$

⁷Physik-Institut, Universität Zürich, Zürich, Switzerland

 $^{(\ddagger)}$ retired

Outline

- Theoretical Motivation
- Production and Decay of Heavy Neutral Leptons
- Experimental Setup
- Extended Physics Program
- Time Line and Conclusion

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

• Discovery of the <u>126</u> GeV Higgs boson \rightarrow Triumph of the Standard Model.

Another success of the SM: Observation of the rarest B decay mode

Landscape before LHC:

In parallel, many direct searches for new SUSY particles

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus. for theoretical signal cross section uncertaint

Nothing found (yet) !

Thomas Ruf

- No new particles (yet) in direct searches.
- Flavour physics, e.g. BB-mixing pushes scale for NP up to 0.5 10⁴ TeV depending on assumptions of couplings.
- Air becomes thin for NP at TeV scale.

Waiting with suspense for the first LHC results with increased energy $\sqrt{s} \approx 13 \ TeV$

Credit http://de.wikipedia.org/wiki/Datei:Nanga_Parbat_from_air.jpg

Higgs mass M_h in GeV

Freiburg 20.05.2014

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

gravitational lensing

The most economical solution, only add what is needed

- Adding three new fundamental fermions, right-handed Majorana Heavy Neutral Leptons (HNL): N₁, N₂ and N₃
 - N₁ dark matter candidate

 $M \approx 10 \text{ keV}$

- $N_{2,3}$ give masses to neutrinos via seesaw mechanism, $M \approx 1 \text{ GeV}$ and produce Baryon Asymmetry of the Universe via leptogenesis
- Higgs: give masses to quarks, leptons, Z, W and inflate the Universe

Most general renormalisable Lagrangian with 3 right-handed neutrinos N_I :

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{\substack{I=1,2,3\\\alpha=e,\mu,\tau}} i \overline{N}_I \delta_\mu \gamma^\mu N_I - Y_{I\alpha} \overline{N}_I^c \widetilde{H} L^c_\alpha - \frac{M_I}{2} \overline{N}_I^c N_I + h.c.$$
Yukawa term: mixing of
N_I with active neutrinos
to explain ν -oscillations
Majorana term which
carries no gauge charge

Dirac mass term:
$$m_D \sim Y_{I\alpha} v$$

Scale of active neutrino masses given by seesaw formula: $m_{\nu} \sim \frac{m_D^2}{M}$

For HNL mass ~1 GeV
and
$$m_{\nu} \sim 0.05 \text{ eV}$$

 \Rightarrow
 $m_D \sim 10 \text{ keV}$ and Yukawa coupling ~10⁻⁷

- Does not contribute to seesaw mechanism
- Yukawa couplings are small, therefore N₁ can be very stable, $\tau \gg \tau_{universe}$

- Recent observations, Feb 2014, two independent teams come to same conclusion:
 - arxiv.org/abs/1402.2301: Detection of an Unidentified Emission Line in the Stacked X-ray spectrum of Galaxy Clusters, E_γ ~ 3.56 keV, Harvard-Smithsonian Center for Astrophysics & NASA Goddard Space Flight Center
 - arxiv.org/abs/1402.4119: An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, $E_{\gamma} \sim 3.5 \ keV$, <u>Alexey Boyarsky, Oleg Ruchayskiy</u>, Dmytro lakubovskyi, Jeroen Franse

Astro-H, 2015 launch, will confirm / rule-out the DM origin of this signal

BAU and DM in the vMSM

6000 dearces

Baryon Asymmetry and BBN

N_{2,3} oscillations are the source of baryon asymmetry

- $N_{2,3}$ are created in the early universe
- At T > 100 GeV, due to small couplings, they are out of thermal equilibrium
- Oscilatte in a coherent way with CPV *, 6 new CPV phases available
- CPV produces lepton asymmetries, flavored leptogenesis
- Lepton number of active left-handed neutrinos is transferred to baryons due to equilibrium sphaleron processes

* Mass degenerated $N_{2,3}$ greatly enhance CPV and needed for resonant N₁ production

Baryon Asymmetry and BBN

Constraints

- **BAU requires out of equilibrium**: mixing angle of $N_{2,3}$ to active neutrino cannot be too large
- Neutrino masses: Mixing angle cannot be too small
- **Big Bang Nucleosynthesis**: Decays of HNL must not spoil BBN $au_{
 m N_{2.3}} < 0.1s,$

otherwise nucleosynthesis affected by N_{2,3} decays (75/25 % H/He-4)

Previous experiments

- **PS191** (CERN 1988), E_{beam} = 19 GeV, 1.4×10^{19} pot, 128m from target
- CHARM (CERN 1986), E_{beam} = 400 GeV, 2.4 × 10¹⁸ pot, 480m from target
- NuTev (Fermilab 1999), E_{beam} = 800 GeV, 2.5 × 10¹⁸ pot, 1.4km from target

EXAMPLE 1 Large area allowed by cosmology with $M_N < 2 \text{ GeV}$ is still unexplored

Todays Production and Decay of HNLs

- N_{2,3} mix with normal neutrinos and can be "copiously" produced in (semi) leptonic hadron decays: $K \to \mu\nu, D \to K(\pi)\mu\nu, B \to D(\pi)\mu\nu$
 - $M_N < 0.5$ GeV with K, $M_N < 2$ GeV with charm, $M_N < 3 5$ GeV with beauty
- **\mathbb{N}_{2,3}** production in charm and subsequent decays

Freiburg 20.05.2014

Todays Production and Decay of HNLs

- Large source of charm provided by proton (400 GeV) \rightarrow fix target collisions
 - Sufficient large charm cross section, $\sqrt{s} = 27.4 \text{ GeV}$
 - high intensity beam ($\sim 5 \times 10^{13}$ p every 10 sec) 2×10^{20} pot in 3-4 years (CNGS): 2×10^{17} c-hadrons
 - Large detector acceptance due to boost

 $au_{
m N_{2,3}} \propto U^{-2}$, i.e. $c au \propto O(
m km)$

10 20 40 60 80 100 120 140 160 180 200 220 √s (GeV)

 $pp \rightarrow c\overline{c}$

Other sources:

- ▶ LHC ($\sqrt{s} = 14$ TeV), ~50 collisions / 25ns and 500 x $\sigma_{c\bar{c}}$ 2×10^{16} c-hadrons in 3-4 years in 4π , but almost no acceptance
- Fermilab (120 GeV), 10 x smaller $\sigma_{c\bar{c}}$, 10x pot for LBNE by 2025 (?), but HNL operation not compatible with neutrino physics

Phys. G: Nucl. Part. Phys. 30 S31

2004

17

CTEQ6L (2002

RST 2001 LC

The Experimental Setup

- Concept
- Beamline & Target
- Muon Shield
- Decay Volume and Spectrometer
- Detector Technologies

Concept of Experimental Setup

- For reducing muon and neutrino background, would like to stop pions/kaons before they decay, \Rightarrow need heavy target = tungsten
- For radiation protection: need hadron absorber
- Detector needs to be shielded for still large flux of muons $\approx 10^{11}$ /spill, for acceptance reasons as short as possible
 - passive shielding (W+Pb) or active shielding (magnets)
- Empty decay volume followed by a detector measuring the HNL decay products, charged and neutral.
 - Veto detector to identify background originating from muon shield
- To increase statistics, repeat (veto + decay volume + detector)

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Beamline & Target

Beamline & Target

General Infrastructures Services Department

21

- An engineering design for a target station had already been worked out for the CERN neutrino R&D facility, used now as a starting point for SHiP.
- Challenge are the mechanical stresses and cooling
 - 500 kW power deposition in the W target during ~1s, every 10s
 - 200 kW power in the hadron absorber
 - Results of a thermo-mechanical design study expected by June.
 - Most probably, target needs to be segmented

Thomas Ruf

Muon Shield

interacting in the last cm's of the muon shield μ momentum producing K_S , Λ , K_L . To have < 100 events with the decay products recorded by the detector for the full lifetime of the experiment (2x10²⁰ pot), require < 10⁵ μ 's / spill.

Two solutions are under study, a pure passive shielding with heavy materials and a mixture of active shielding with dipole magnets and passive shielding.

24

Stop muons through ionization, use dense material to minimize distance to

target, 50m \Rightarrow 70m, loose 13% in signal acceptance

- Tungsten first choice
 - Robust and simple, no operational cost
- Multiple scattering requires increase of volume as function of distance
 - ► € constraint, add Pb
- Current baseline, residual muon rate < 10⁵ / 5x10¹³ pot 100t W and 2500t Pb

Ranges	E _u = 50GeV	200GeV	400GeV
► Ir (22.4 t/m³):	12.0m	31.8m	46.2m
▶ Os (22.57 t/m³	³): 11.9m	31.8m	46.3m
► Au (17.3 t/m³):	: 13.8m	36.5m	52.9m
►U (19 t/m³):	14.3m	36.8m	52.5m
►W (19.3 t/m ³):	13.8m	37.1m	54.0m
► Hg (13.5 t/m³)	: 19.6m	51.8m	75.1m
▶ Pb (11.3 t/m³):	: 23.4m	61.5m	89.0m
► Ag (10.5 t/m³):	: 23.8m	69.4m	107m
▶ Cu (8.96 t/m³)	: 27.2m	85m	137m
► Fe (7.87 t/m³)	: 30.3m	96.2m	157m
Concrete:	86.7m	300m	540m
► H ₂ 0:	192.3m	680m	1243m

Muon Shield, Active

Use magnetic field to deflect muons

- Need ≈ 30 Tm for 350 GeV muons
- Cheap option, dipole magnets with saturated iron, B_{max}=1.8T, 4(3) x 6m
- Big problem: return field
- Need to add passive shield, iron block to stop low momentum muons < 100 GeV _
- Optimizaton ongoing

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Decay Volume and Spectrometer

Detector components are based on existing technologies

Thomas Ruf

Imperial College

Seminar Fundamentale Wechselwirkungen

Vacuum tank and straw tracker NA62 ($K^+ \rightarrow \pi^+ \nu \overline{\nu}$)

- 2m Ø @ 0.01µbar
- Straw tubes with 120 μm spatial resolution
- $0.5\% X/X_0$ for 4 stations
- Demonstrated to work in vacuum

For SHiP, needs to be extrapolated to 5m Ø

- Similar to LHCb design but with ~40% less iron and three times less power
- Peak field ~0.2T, integral field of ~0.5 Tm
- Need $\approx 20m^2$ aperture, LHCb has $16m^2$ exit aperture

M

Magnet

• Expected resolution for 1 GeV $N \to \mu^+ \pi^-$, momentum window for highest momentum track

Pointing requirement for K_L background suppression

Electromagnetic Calorimeter

- LHCb Shashlik
 - ► $6.3 \times 7.8 \text{ m}^2$
 - $\blacktriangleright \frac{\sigma(E)}{E} < 10\%/\sqrt{E} < \oplus 1.5\%$
- Larger / better than required
- For $N \rightarrow \mu^+ \rho^- (\pi^- \pi^0 (\gamma \gamma))$, need small cells $(10 \times 10 \text{ cm}^2)$ everywhere:

Expected Event Yield

• AND 10x larger acceptance

- Oct'13: Submission of EOI (CERN-SPSC-2013-024) and presentation at SPSC
 - 4 referees assigned, came with a list of questions, answers delivered in Jan'14
- Jan'14: SPSC discussed our proposal and recognized the interesting physics potential. Endorsement to proceed towards technical design report, with broader physics programme and stronger collaboration.
- Feb'14: CERN management has set-up task force (machine & engineering departements + experiment)
 - "Deliver report including the layout and the resources which are required to set-up the experiment and the calendar."

In the meantime

Proto-collaboration formed: Search for Hidden Particles

Search for Hidden Particles

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Physics case for a general beam dump facility

Different portals to hidden sector

- ► Vector: para-photon, secluded photon
- ► Higgs: dark scalar
- Axion: pseudo-scalars, axion like particles
- Neutrino: Heavy Neutral Leptons

Where is new physics?

Long lived weakly interacting particles:

- Heavy masses, O(100 GeV): ATLAS and CMS via missing E_T
- Small masses, O(1-10 GeV), direct observation, large couplings = short lifetimes (~1ns) : LHCb, meson-factories
- Small masses, O(1GeV), small couplings = long lifetimes: SHiP

The SHiP beam dump experiment is complimentary to new particle searches at colliders, in the parameter space relevant for cosmology.

Vector Portal

- Okun, Voloshin, Ellis, Schwarz, Tyupkin, Kolb, Seckel, Turner, Georgi, Ginsparg, Glashow, Foot, Volkas, Blinnikov, Khlopov, Gninenko, Ignatiev, Berezhiani,..
- Holdom, Galison, Manohar, Arkani-Hamed, Weiner, Schuster, Essig, Pospelov, Toro, Batell, Ritz, Andreas, Goodsell, Abel, Khoze, Ringwald, Fayet, Cheung, Ruderman, Wang, Yavin, Morrissey, Poland, Zurek, Reece, Wang, ... A' → Standard Model

This constrains can be greatly improved by SHiP

Thomas Ruf

Higgs Portal

 Patt, Wilczek, Schabinger, Wells, No, Ramsey-Musolf, Walker, Khoze, Ro, Choi, Englert, Zerwas, Lebedev, Mambrini, Lee, Jaeckel, Everett, Djouadi, Falkowski, Schwetz, Zupan, Tytgat, Pospelov, Batell, Ritz, Bezrukov, Gorbunov, Gunion, Haber, Kane, Dawson,...

This constrains can be greatly improved by SHiP

Axion Portal

• Weinberg, Wilczek, Witten, Conlon, Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell, Cicoli, Goodsell, Ringwald, Lazarides, Shafi, Choi, Essig, Harnik, Kaplan, Toro, Gorbunov,...

Left: $K^+ \to \operatorname{anything} + e^+e^-$ (green); $K^+ \to \pi^+ + \operatorname{invisible}$ (blue); $B^+ \to K^+l^+l^-$ (yellow) ($l = e, \mu$); $B^+ \to K^+ + \operatorname{invisible}$ (red). Right: Gray: the combined exclusion region from meson decays; green: CHARM; blue: supernova SN 1987a; red: muon anomalous magnetic moment.

This constrains can be greatly improved by SHiP

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Beam dump also ideal for the study of v_{τ} scattering

- v_{τ} produced in D_s decays, similar kinematics as HNLs
- v_e and v_μ background is suppressed, heavy target
- Experimental status: DONUT, PR D 78, 052002 (2008)
 - 3.6 × 10¹⁷ pot, 800 GeV,
 260 kg emulsion ν-target
 - 9 candidates, including 1.5 background

Freiburg 20.05.2014

Seminar Fundamentale Wechselwirkungen

$u_{ au}$ Physics with $2 imes 10^{20}$ pot

- With same v-target mass as DONUT, will get 20x more CC events
- Can increase ν -target mass "easily" these days, 3% of OPERA

- Only small space required along beam-line, almost no loss for HNL physics
- HNL spectrometer used as forward spectrometer for ν -physics program
- v-target tracker can be used as Veto against K_L induced background
- Expect 1500-2000 reconstructed CC v_{τ} interactions
- In addition: $5 \times v_{\mu}$ CC charm events than CHORUS (2k)

Thomas Ruf

Imperial College

NEXT

SHIP (Search for HIdden Particles) is a new beam dump experiment at the SPS. It looks for very weakly interacting long lived particles including heavy neutral leptons - right-handed partners of the active neutrinos; light supersymmetric particles - sgoldstinos, etc; scalar, axion and vector portals to the hidden sector.

The objective of this meeting is to give a theoretical overview of the new physics that is within the reach of SHIP and to have discussions on the detector requirements and technologies. Colleagues that are interested in the theoretical topics or representing experimental groups are encouraged to participate.

R

10 - 12 - JUNE - 2014 - ZÜRICH

Overview
Scientific Programme
Timetable
Contribution List
Author List
My Conference
My Contributions
Registration
Modify my Registration
Participant List

Scientific Programme

SHIP (Search for HIdden Particles) is the proposal of a new fixed-target experiment at the CERN SPS accelerator to search for hidden particles. In particular, to search for Heavy Neutral Leptons (HNLs) produced in charm decays. HNLs are right-handed partners of the Standard Model neutrinos. The existence of such particles is strongly motivated by theory, as they can simultaneously explain the baryon asymmetry of the Universe, account for the pattern of neutrino masses and oscillations, and provide a Dark Matter candidate. The objective of this workshop is to give a theoretical overview of the new physics that is within the reach of SHIP and to have discussions on the detector requirements and technologies. Colleagues that are interested in the theoretical topics or representing experimental groups are encouraged to participate.

Theoretical Overview (10th June)

Review of heavy neutral leptons, with discussions about leptogenesis and cosmological constraints

Theory review (11th June Morning)

Discussion of theoretical status and present experimental constraints

First Ship Workshop

Facility and Experiment (11th June Afternoon)

Discussion on the primary beam line, target and detector design for the SHIP experiment

Tau neutrinos and SHIP detector (12th June Morning)

Discussion on the electronics and DAQ system for the SHIP experiment and on the detector for tau neutrinos

Summary and discussion (12th June Afternoon)

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

10 - 12 - JUNE - 2014 - ZÜRICH

First Ship Workshop

		Overview	Scientific P	rogrami	
		Scientific Programme		_	09:
		Timetable	SHIP (Search 1 SPS accelerato	for HIdden I r to search f	
		Contribution List	(HNLs) produc	ced in charm	
13:00	Registration and coffee			ence of ain the l oscilla a theor on the	10:
	Universität Zürich		12:30 - 13:30	oics or	
	Welcome and opening of the wo	orkshop	Ueli STRAUMANN		
	Universität Zürich		13:30 - 13:40		11:
	Theory confronts the naturalne	ss riddle	Guido ALTARELLI		
14.00	Universität Zürich		13:40 - 14:05	view (
	What is next? - Experiment view	w	Dr. Maxim TITOV	al lept	
	Universität Zürich		14:10 - 14:35	F-	12:
	Scalars and pseudo-scalars		Fedor BEZRUKOV	th Iu	
15:00	Universität Zürich		14:40 - 15:05	.ui Ju	
	Dark photons		Sarah ANDREAS	al stat	
	Universität Zürich		15:10 - 15:35		
	Experimental sensitivity to dar	k photons	Jurgen BRUNNER	rimer	13:
	Universität Zürich		15:40 - 15:55	Jary be	
16:00	Coffee break			idi y be	
	Universität Zürich		16:00 - 16:30	1 SHI	
	The scale of see-saw and mode	ls for neutrino masses	Prof. Manfred LINDNER	10111	14:
	Universität Zürich		16:30 - 16:55	ronics	
17:00	Expectations for properties of I	neavy neutral leptons from BSM physics	Robert SHROCK		
	Universität Zürich		17:00 - 17:25		
	Previous searches of heavy new	utral leptons	Alexandre ROZANOV	cussi	
	Universität Zürich		17:30 - 17:55		15:
18:00	Summary of constraints on hea	vy neutral leptons	Silvia PASCOLI		
	Universität Zürich		18:00 - 18:25		

	Lepton number violation and heavy neutral leptons	Thomas HAMBYE
	Universität Zürich	08:30 - 08:55
09:00	Overview of NuMSM	Takehiko ASAKA
	Universität Zürich	09:00 - 09:25
	Baryogenesis	Bjorn GARBRECHT
	Universität Zürich	09:30 - 09:55
10:00	Heavy neutral leptons in cosmology and astrophysics	Oleg RUCHAYSKIY
	Universität Zürich	10:00 - 10:25
	Coffee break	
	Universität Zürich	10:30 - 11:00
11:00	New physics in charm and bottom decays	Gino ISIDORI
	Universität Zürich	11:00 - 11:25
	R-parity violation and light neutralino	Werner POROD
	Universität Zürich	11:30 - 11:55
12:00	Sgoldstino	Dr. Dumitru GHILENCEA
	Universität Zürich	12:00 - 12:25
13:00	Buffet lunch	
	Universität Zürich	12:30 - 13:30
	Overall requirements and layout of SHIP	Richard JACOBSSON
	Universität Zürich	13:30 - 13:50
14:00	SPS configuration and beam transfer	Dr. Brennan GODDARD
14.00	Universität Zürich	13:55 - 14:20
	Target complex	Marco CALVIANI
	Universität Zürich	14:25 - 14:45
	Muon shield	Thomas RUF
15:00	Universität Zürich	14:50 - 15:10
	The role of CERN in the diversity of physics programs	Sergio BERTOLUCCI
	Universität Zürich	15:15 - 15:45

Freiburg 20.05.2014

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Time Line

- June 2014: collaboration kick-off meeting in Zurich
- Spring 2015: submission of technical design report
- 2015-2017: R&D, starting civil engineering
- 2018-19 (LS2): Connection of extraction line to SPS, starting detector installation
- >2020: First beam

Conclusions

- SHiP will explore the unknown territory of very weakly interacting long-lived particles Detector is based on
 - existing proven technologies
 - New ideas not excluded

- The impact of HNL discovery on particle physics is unicult to overesumate:
 - The origin of the baryon asymmetry of the Universe
 - The nature of Dark Matter
 - The origin of neutrino mass
- CERN directorate has set-up task force to study impact for CERN
- The SHiP collaboration is ready for boarding, first collaboration meeting June 10-12.

Who would like to sign on for the journey?

Institutes potentiall interested, April'14

- European Organization for Nuclear Research (CERN)
- Germany:
 - Humboldt Universität Berlin, Dresden
- France:
 - CEA Saclay, APC/LPNHE Universite Paris-Diderot
- Italy:
 - Instituto Nazionale di Fisica Nucleare (INFN)
- Netherlands:
 - National Institute for Subatomic Physics (NIKHEF, Amsterdam)
- Poland:
 - Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences (Kracow)
- Russia:
 - Institute for Nuclear Research of Russian Academy of Science (INR, Moscow), Institute for Theoretical and Experimental Physics ((ITEP, Moscow), Joint Institute for Nuclear Research (JINR, Dubna)
- Sweden:
 - Stockholm University, Uppsala University
- Switzerland:
 - Ecole Polytechnique Federale de Lausanne (EPFL), University of Zurich, University of Geneva
- UK:
 - University of Oxford, University of Liverpool, Imperial College London, University of Warwick

Backups

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Higgs/Top/Vacuum stability

The main LHC result: SM is a consistent effective theory all the way up to the Planck scale

- No signs of new physics beyond the SM are seen
- M_H < 175 GeV : SM is a weakly coupled theory up to Planck energies
- *M_H* > 111 GeV: Our EW vacuum is stable or metastable with a lifetime greatly exceeding the Universe age. Espinosa et al

The mass of the Higgs boson is very close to the stability bound on the Higgs mass* (95'), to the Higgs inflation bound** (08'), and to asymptotic safety value for M_H *** (09'):

$$M_{crit} = [129.3 + \frac{y_t(M_t) - 0.9361}{0.0058} \times 2.0 - \frac{\alpha_s(M_Z) - 0.1184}{0.0007} \times 0.5] \, \mathrm{GeV}$$

$y_t(M_t)$ - top Yukawa in $\overline{\mathrm{MS}}$ scheme

Matching at EW scale	Central value	theor. error	
Bezrukov et al, $\mathcal{O}(\alpha \alpha_s)$	129.4 GeV	1.0 GeV	
Degrassi et al, $\mathcal{O}(lpha lpha_s, y_t^2 lpha_s, \lambda^2, \lambda lpha_s)$	129.6 GeV	0.7 GeV	
Buttazzo et al, complete 2-loop	129.3 GeV	0.07 GeV	

Chetyrkin et al, Mihaila et al, Bednyakov et al, 3 loop running to high energies

present data:

A.Golutvin / D.Gorbunov

Thomas Ruf

Seminar Fundamentale Wechselwirkungen

Bounds on the scale of New Physics

Most stringent limits come from observables in BB mixing

Type 1 Seesaw Models

- (1) Models with HNLs with $10^9 < M_N < 10^{14} \text{ GeV}$ [18] are motivated by Grand Unified Theories. In such theories the observed baryon asymmetry of the Universe originates in CP-violating decays of the HNLs, which produce a lepton asymmetry [19]. This asymmetry is then converted into a baryon asymmetry by sphalerons [20,21]. The large mass of the HNLs results in a fine-tuning problem for the Higgs mass. A natural solution is provided by low energy supersymmetry but at present this is not supported by experimental evidence. Theories with very heavy neutral leptons are unable to account for dark matter and cannot be directly probed by experiments;
- (2) Models with $M_N \sim 10^2 10^3$ GeV (for a review see Ref. [22]) are motivated by a possible solution to the hierarchy problem at the electroweak scale (see e.g. Ref. [23]). The baryon asymmetry of the Universe can be produced via resonant leptogenesis and sphalerons [24]. As above, there is no candidate for dark matter particles. A portion of the parameter space can be accessed by direct searches at the ATLAS and CMS experiments [25];
- SHiP
- (3) Models with masses of the HNLs below the Fermi scale and roughly of the order of the masses of the known quarks and leptons, are able to account for neutrino masses and oscillations and can also give rise to the baryon asymmetry of the Universe and can provide dark matter [7,8,26-28] (for a review see Ref. [29]). The phenomenology of GeV-scale HNLs was previously studied in Refs. [30-33]. Owing to its relatively large mass, the dark matter candidate the O(10) keV HNL, does not contribute to the number of relativistic neutrino species measured recently by the Planck satellite [34];
- (4) Models with $M_N \sim \text{eV}$ [35] are motivated by the 2–3 σ deviations observed in short-baseline neutrino-oscillation experiments [36], [37], reactor neutrino experiments [38] and gallium solar neutrino experiments [39]-[42]. Such neutral leptons are usually referred to as sterile neutrinos. Theories involving these sterile neutrinos can explain neither the baryon asymmetry of the Universe nor dark matter.

cc and bb x-sections

hep-pl iv:0709.2531

Fig. 2. The NLO total $c\bar{c}$ cross sections as a function of \sqrt{S} for $\sqrt{S} \leq 70$ GeV (left-hand side) and up to 14 TeV (right-hand side) calculated with the CTEQ6M parton densities. The solid curve is the central result; the upper and lower dashed curves are the upper and lower edges of the uncertainty band. The dotted curves are calculations with m = 1.2 GeV, $\mu_F = \mu_R = 2m$.

Fig. 3. The NLO total $b\overline{b}$ cross sections as a function of \sqrt{S} for $\sqrt{S} \leq 70$ GeV (left-hand side) and up to 14 TeV (right-hand side) calculated with the CTEQ6M parton densities. The solid curve is the central result; the upper and lower dashed curves are the upper and lower edges of the uncertainty band.

Figure 5: Polar angle distribution (left) of the HNLs and (right) of the muons and pions from the decay $N \rightarrow \mu^{-}\pi^{+}$ in simulated HNL decays with $M_{N} = 1$ GeV.

Figure 8: Fraction of HNL in the detector acceptance as a function of the length of the fiducial volume. Open circles: a single spectrometer following a fiducial volume of a given length. Full circles: two spectrometers in series, each following a fiducial volume of half the given length. The spectrometer length is fixed to 10 m.

Seminar Fundamentale Wechselwirkungen