

hidden sector:

HNL: baryon asymmetry of the Universe, dark matter, neutrino masses sgoldstino, light neutralino: SUSY paraphoton: mirror matter, dark matter

Primary Beam

Experimental sensitivity based on 2x10²⁰ protons on target, that is 5 years of equivalent CNGS operation

→ Basic experimental requirements

- 1. Maximum production of D mesons at an energy of ~400 GeV
 - Energy is driven by optimization between D cross-section, acceptance from boost, and amount of shield to range out muon flux.
- 2. 6s/7.2s SPS cycles with preference for longest possible extraction spill to reduce detector occupancy
 - Easing requirements on detector and reconstruction
- 3. Minimal beam induced background in terms of neutrinos and muons
 - Use of a heavy target material (tungsten) to stop pions and kaons
- 4. HNL production angles relaxes significantly the beam parameters (collimation and alignment)
 - Beam delivery line consisting mainly of drift space and dilution to ease tungsten target design

Based on these requirements, the proponents have investigated a realistic NA option in close contact with beam, target, radiology, and infrastructure experts

- SPS extraction in SPS-LSS2
 - Key study concerns optimal extraction type
- Beam splitting/switch at the top of SPS-NA transfer line (TT20)
 - Key study concerns the possibility of a combined splitter for COMPASS and the EOI-010 experiment transfer line
- A compact target bunker
 - Limited volume by the use of the hadron stopper closing the entrance to the muon shield tunnel
- Wide tungsten target head
 - Key study concerns the solid tungsten target design with heat extraction and mechanical stress
- 60 m tunnel housing optimised combination of passive/active muon shield
- A significant fraction of studies performed for neutrino facilities are directly beneficial to the current proposal (extraction, TT20 reuse, transfer line, target station, civil engineering and radiological aspects)

Detector concept

(based on existing technologies)

• Reconstruction of signal decays in the final states: $\mu^-\pi^+$, $\mu^-\rho^+$ & $e^-\pi^+$

Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter in large experimental hall

