

New physics at GeV scale?

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Dubna Round Table Theoretical and Experimental Physics after the discovery of BEH: What next ?

JINR, Dubna, Russia

Outline

Where is new physics ?

Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Outline

Where is new physics ?

2 Neutrino oscillations: NP is below EW scale

B) Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Summary

ЯN ИR

Searches at LHC

Finally... Higgs boson has been recognized

ИI ЯN ИR

Searches at LHC

Finally... Higgs boson has been recognized

RG evolution of the SM couplings

1305.7055

How "natural" the 126 GeV...

At the crossroads

What we have at present

- We certainly need NP
- Any NP contribute to the Higgs boson mass, which is 126 GeV
- No clear signal of NP (no SUSY) at 8 TeV

Logically possible ways out

 NP is right at 13-14 TeV (why hidden so well at 8 TeV ?) (why no hints in flavor ?)

• NP is

at the gravity (Planck) scale

 NP is below EW scale motivated by neutrino oscillations

At the crossroads

Ä

What we have at present

- We certainly need NP
- Any NP contribute to the Higgs boson mass, which is 126 GeV
- No clear signal of NP (no SUSY) at 8 TeV

Logically possible ways out

- NP is right at 13-14 TeV (why hidden so well at 8 TeV ?) (why no hints in flavor ?)
- NP is
 - at the gravity (Planck) scale
- NP is below EW scale motivated by neutrino oscillations

At the crossroads

Ä

What we have at present

- We certainly need NP
- Any NP contribute to the Higgs boson mass, which is 126 GeV
- No clear signal of NP (no SUSY) at 8 TeV

Logically possible ways out

- NP is right at 13-14 TeV (why hidden so well at 8 TeV ?) (why no hints in flavor ?)
- NP is
 - at the gravity (Planck) scale
- NP is below EW scale motivated by neutrino oscillations

Where is new physics ?

Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target

vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Summary

Neutrino oscillations: masses and mixing angles

Neutrino oscillations: NP is below EW scale

"Normal" and "Inverted" neutrino mass hierarchies

Only two squared mass differences are determined, there are options for masses...

may be, the hierarchy will be fixed by

T2K & Novae

neutrinoless 2β -decay $Z - > (Z+2) + 2e^-$ CP ??

may be Cosmology will help... Planck (2014)? ... EUCLID (galaxy survey) $|m_{ee}| = |\Sigma U_{ei}^2 m_i|$, for Majorana masses Neutrino oscillations: NP is below EW scale

Planck, SZ-clusters, BAO, Hubble parameter, vs 1 eV anomalies: + for LSND, * for reactor and Gallium

Future: EUCLID-like survey of galaxies

1304.2321

Dmitry Gorbunov (INR)

New physics at GeV scale?

Active neutrino masses without new fields

Dimension-5 operator

$$\Delta L = 2$$

$$\mathscr{L}^{(5)} = rac{F_{lphaeta}}{4\Lambda} \bar{L}_{lpha} \tilde{H} H^{\dagger} L^{c}_{eta} + \mathrm{h.c.}$$

 L_{α} are SM leptonic doublets, $\alpha = 1, 2, 3$, $\tilde{H}_a = \varepsilon_{ab}H_b^*$, a, b = 1, 2; in a unitary gauge $H^T = (0, (\nu + h)/\sqrt{2})$ and

$$\mathscr{L}_{vv}^{(5)} = \frac{v^2 \, F_{\alpha\beta}}{4 \, \Lambda} \times \frac{1}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.} = m_{\alpha\beta} \times \frac{1}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.}$$

where

 Λ is the scale of new dynamics

only their ratio is fixed

 $F_{\alpha\beta}$ is the strength of new dynamics

by the scale of active neutrino masses

$$\mathsf{F}_{lphaeta}\lesssim 1 \qquad \Longrightarrow \qquad \Lambda\lesssim 3 imes 10^{14}\,\mathrm{GeV} imes \left(rac{3 imes 10^{-3}\,\mathrm{e}}{\Delta m_{\mathrm{atm}}^2}
ight)$$

The model has to be UV-completed at the scale $\Lambda \rightarrow$

New physics

- The scale is certainly below the Planck (string) scale, and hence is most probably at (below) EW scale
- Why no hints recognized at this scale?

couplings to the SM fields are tiny

 which probably implies not a GUT-like new physics (all is ∝ g) hence coupling to new gauge singlets

• that is usually nonrenormalizable interactions... however, there are exceptions...

thus we arrive at the portals

$$F_{lphaeta}\lesssim 1 \qquad \Longrightarrow \qquad \Lambda\lesssim 3 imes 10^{14}\,{
m GeV} imes \left(rac{3 imes 10^{-3}\,{
m eV}^2}{\Delta m_{
m atm}^2}
ight)^{1/2}$$

The model has to be UV-completed at the scale $\Lambda \rightarrow$

• The scale is certainly below the Planck (string) scale, and hence is most probably at (below) EW scale

• Why no hints recognized at this scale?

couplings to the SM fields are tiny

 which probably implies not a GUT-like new physics (all is ∝ g) hence coupling to new gauge singlets

• that is usually nonrenormalizable interactions... however, there are exceptions...

thus we arrive at the portals

F

New physics

$$F_{lphaeta}\lesssim 1 \qquad \Longrightarrow \qquad \Lambda\lesssim 3 imes 10^{14}\,{
m GeV} imes \left(rac{3 imes 10^{-3}\,{
m eV}^2}{\Delta m_{
m atm}^2}
ight)^{1/2}$$

The model has to be UV-completed at the scale $\Lambda \rightarrow$

• The scale is certainly below the Planck (string) scale, and hence is most probably at (below) EW scale

• Why no hints recognized at this scale?

couplings to the SM fields are tiny

which probably implies not a GUT-like new physics (all is
 g)
 hence coupling to new gauge singlets

• that is usually nonrenormalizable interactions... however, there are exceptions...

thus we arrive at the portals

F

New physics

$$F_{lphaeta} \lesssim 1 \qquad \Longrightarrow \qquad \Lambda \lesssim 3 imes 10^{14} \, ext{GeV} imes \left(rac{3 imes 10^{-3} \, ext{eV}^2}{\Delta m_{ ext{atm}}^2}
ight)^{1/2}$$

The model has to be UV-completed at the scale $\Lambda \rightarrow$

• The scale is certainly below the Planck (string) scale, and hence is most probably at (below) EW scale

• Why no hints recognized at this scale?

couplings to the SM fields are tiny

 which probably implies not a GUT-like new physics (all is ∝ g) hence coupling to new gauge singlets

• that is usually nonrenormalizable interactions... however, there are exceptions...

thus we arrive at the portals

Dmitry Gorbunov (INR)

New physics

Outline

Where is new physics ?

2) Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Summary

Elusive NP: portals to a hidden World

Three Portals to the hidden World

Renormalizable interaction including SM field and new (hypothetical) fields singlets with respect to the SM gauge group

Attractive feature:

couplings are insensitive to energy in c.m.f., hence low energy experiments (intensity frontier) are favorable

• Scalar portal: SM Higgs doublet *H* and hidden scalar *S*

the simplest dark matter

$$\mathscr{L}_{\text{scalar portal}} = -\beta H^{\dagger} H S^{\dagger} S$$

• Spinor portal: SM lepton doublet L, Higgs congugate field $\tilde{H} = \varepsilon H^*$ and hidden fermion N sterile neutrino !!

$$\mathscr{L}_{spinor \, portal} = -y \overline{L} \widetilde{H} N$$

Vector portal: SM gauge field of U(1)_Y and gauge hidden field of abelian group U(1)'

$$\mathscr{L}_{\text{vector portal}} = -\frac{\varepsilon}{2} \, B_{\mu\nu}^{U(1)\gamma} \, B_{\mu\nu}^{U(1)'}$$

Dmitry Gorbunov (INR)

New physics at GeV scale?

ЯN ИК

Outline

Where is new physics ?

Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Elusive NP: portals to a hidden World

To be tested at LHC

scalar as dark matter: $V = \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{2}S^2H^{\dagger}H$

Elusive NP: portals to a hidden World

To be tested at LHC

NR

scalar as dark matter: $V = \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{2}S^2H^{\dagger}H$

Where is new physics ?

- Neutrino oscillations: NP is below EW scale
- Elusive NP: portals to a hidden World
 To be tested at LHC
 - To be tested at fixed target
 - vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

The experiment under discussion: a scheme

Searches for any BSM with

Neutral Unstable but Long Lived Particles Lighter than D-meson

The experiment under discussion: a sketch

Physics to be tested

- light, very weakly interacting, yet unstable particles: produced (in)directly on target, then decaying in the detector fiducial volume
 - light sgoldstinos (superpartners of goldstino in SUSY models)
 e.g., D.S. Gorbunov (2001)
 R-parity violating neutralinos in SUSY models
 - e.g., A. Dedes, H.K. Dreiner, P. Richardson (2001)

massive paraphotons (in secluded dark matter models)

e.g., M. Pospelov, A. Ritz, M.B. Voloshin (2008)

- light, fairly weakly interacting, unstable particles: produced in beam dump (rock), right in front of detector, then decaying in the detector fiducial volume
 - sterile neutrinos with transition dipole moments e.g., S.N. Gninenko (2009,2010)

 $v A \rightarrow N A$, then $N \rightarrow v \gamma$

e.g. $D \to I \tilde{\chi}$, then $\tilde{\chi} \to I^+ I^- v$

e.g. $\Sigma \rightarrow \rho V$, then $V \rightarrow l^+ l^-$

as compared to CHARM longer lifetimes and smaller couplings will be accessible

ЯN ИК

Under the name...SHIP

- vMSM: T.Asaka, S.Blanchet, M.Shaposhnikov (2005), T.Asaka, M.Shaposhnikov (2005), see also review A. Boyarsky, O. Ruchayskiy, M.Shaposhnikov (2009)
- direct tests of vMSM: D.G., M.Shaposhnikov (2007)
- searches for dark matter A. Boyarsky, O. Ruchayskiy, M.Shaposhnikov, I.Tkachev, etc...
- proposal for direct searches submitted to European Strategy Group, 2012

D.G., M.Shaposhnikov

sketch of realistic experiment

- S.Gninenko, D.G., and M.Shaposhnikov (2013)
- Expression Of Interests: Proposal to Search for Heavy Neutral Leptons at the SPS W. Bonivento et al, 1310.1762

Search for HIdden Particles

To Host Rats from the SUSY ship...

Outline

Where is new physics ?

Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

Possible new physics: Sterile neutrinos

Minimal extension of SM to explain neutrino oscillations

sterile: new fermions uncharged under the SM gauge group neutrino: explain observed oscillations by mixing with SM (active) neutrinos

Attractive features:

- only 3 Majorana fermions (6 d.o.f.) is enough
- true renormalizable theory not worth then the SM (e.g. may work up to the Planck scale)
- baryon asymmetry via leptogenesis through redistribution of the leptonic charge between active and sterile neutrinos and transfering of the lepton asymmetry into baryon asymmetry by electoweak sphalerons
- dark matter: lightest sterile neutrino (1-50 keV)

spin 0

Seesaw type I mechanism: $M_N \gg m_{active}$

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

where I = 1, 2, 3 and $\alpha = e, \mu, \tau$ $\tilde{H}_a = \varepsilon_{ab} H_b^*$

When Higgs gains $\langle H \rangle = v/\sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = v \frac{f_{\alpha l}}{\sqrt{2}} \overline{v}_{\alpha} N_{l} + \frac{M_{N_{l}}}{2} \overline{N}_{l}^{c} N_{l} + \text{h.c.} = \frac{1}{2} \left(\overline{v}_{\alpha}, \overline{N}_{l}^{c} \right) \begin{pmatrix} 0 & v \frac{\hat{f}}{\sqrt{2}} \\ v \frac{\hat{f}^{T}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} \left(v_{\alpha}^{c}, N_{l} \right)^{T} + \text{h.c.}$$

Then for $M_N \gg \hat{M}_D = v \frac{\hat{t}}{\sqrt{2}}$ we find the eigenvalues:

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}_D \frac{1}{\hat{M}_N} \hat{M}_D^T \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i} v_i + \theta_{\alpha I} N_I$

active-active mixing: (PMNS-matrix U) $U^T \hat{M}^v U = diag(m_1, m_2, m_3)$

active-sterile mixing:
$$\theta_{\alpha l} = \frac{M_{D_{\alpha l}}}{M_l} \propto \hat{f} \frac{v}{M_N} \ll 1$$

Dmitry Gorbunov (INR)

New physics at GeV scale?

Sterile neutrinos: production and decays

vMSM: 3 in 1 flask

Probing leptogenesis SHIP upgrading to Aerocarrier

 $Br(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ $Br(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ $Br(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ $Br(D_s \rightarrow \eta IN) \lesssim 5 \cdot 10^{-8}$ $Br(D \rightarrow K^* IN) \lesssim 7 \cdot 10^{-8}$ $Br(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ $Br(B \rightarrow D^* IN) \lesssim 4 \cdot 10^{-7}$ $Br(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

D.G. M.Shaposhnikov (2007)

New physics at GeV scale?

Probing leptogenesis SHIP upgrading to Aerocarrier

D.G, M.Shaposhnikov (2007) **lower bound at** $\times 10^{-4}$ Br $(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ Br $(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ Br $(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ Br $(D \rightarrow K'IN) \lesssim 5 \cdot 10^{-8}$ Br $(D \rightarrow K^*IN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow D^*IN) \lesssim 4 \cdot 10^{-7}$ Br $(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

04.03.2014, JINR 30 / 32

Outline

Where is new physics ?

2 Neutrino oscillations: NP is below EW scale

Elusive NP: portals to a hidden World

- To be tested at LHC
- To be tested at fixed target
- vMSM: 3 in 1 flask (neutrino oscillations, dark matter, baryon asymmetry of the Universe)

4 Summary

Summary

ЯN ИК

Summary: intensity frontier

- We definitely need New Physics
- There are arguments in favour of NP below EW scale...
- Then above GeV scale we can test it with LHC
- While at GeV scale a fixed-target experiment is much more sensitive

new project SHIP proposed at CERN

Submit a detailed project (Lol/TDR) to SPS by March 2015

On 10-12 of June we organize a Workshop in Zurich (ETH)

- two half-days on physics case at SPS beam-dump
- and then two half-days on detector and discussion of formal collaboration

All of you and your laboratories are welcome to attend the meeting and enter the Collaboration

http://ship.web.cern.ch/ship/

Dmitry Gorbunov (INR)

New physics at GeV scale?

Summary

NR

Summary: intensity frontier

- We definitely need New Physics
- There are arguments in favour of NP below EW scale...
- Then above GeV scale we can test it with LHC
- While at GeV scale a fixed-target experiment is much more sensitive

new project SHIP proposed at CERN

Submit a detailed project (Lol/TDR) to SPS by March 2015

On 10-12 of June we organize a Workshop in Zurich (ETH)

- two half-days on physics case at SPS beam-dump
- and then two half-days on detector and discussion of formal collaboration

All of you and your laboratories are welcome to attend the meeting and enter the Collaboration

http://ship.web.cern.ch/ship/

Dmitry Gorbunov (INR)

New physics at GeV scale?

Backup slides

NR

Leptogenesis in 2+1 scheme: $0v2\beta$ decay region

1308.3550

Present limits

0901.3589: 1) $0\nu\beta\beta$ -bound is stronger by 10, 1205.3867 2) limits from LHCb and CMS

Dmitry Gorbunov (INR)

New physics at GeV scale?

Sterile neutrino mass scale: $\hat{M}_v = -v^2 \hat{f}^T \hat{M}_N^{-1} \hat{f}$

NB: With fine tuning in \hat{M}_N and \hat{f} we can get a hierarchy in sterile neutrino masses, and 1 keV and even 1 eV sterile neutrinos

Lightest sterile neutrino N_1 as Dark Matter

Non-resonant production (active-sterile mixing) is ruled out

 $\begin{array}{l} \mbox{Resonant production (lepton asymmetry) requires} \\ \Delta M_{2,3} \lesssim 10^{-16} \mbox{ GeV} \\ \mbox{arXiv:0804.4542, 0901.0011, 1006.4008} \end{array}$

Dark Matter production from inflaton decays in plasma at $T \sim m_{\chi}$

Not seesaw neutrino!

M.Shaposhnikov, I.Tkachev (2006)

 $M_{N_l} \bar{N}_l^c N_l \leftrightarrow f_l X \bar{N}_l N_l$ Can be "naturally" Warm (250 MeV $< m_{\chi} < 1.8 \, \text{GeV}$)

F.Bezrukov, D.G. (2009)

$$M_1 \lesssim 15 imes \left(rac{m_\chi}{300 \ {
m MeV}}
ight)$$
 keV

Dmitry Gorbunov (INR)

Light soldstinos in SUSY models

SUSY is spontaneously broken (no scalar electron with mass of 510 keV !!)

breaking of $SU(2)_W \times U(1)_Y$ by the $\langle H \rangle = v$

Goldstones bosons couple to all massive fields (Goldberger-Treiman formula like for pion)

$$\mathscr{L} = \frac{1}{v} J^{\mu}_{SU(2)_W \times U(1)_Y} \partial_{\mu} H$$

Higgs mechanism: three modes of H are eaten giving masses to $Z. W^{\pm}$

breaking of SUSY by $\langle F_{\varphi} \rangle = F$

Goldstone fermion: aoldstino

$$\mathcal{L}_{\psi} \propto \frac{1}{F} J^{\mu}_{SUSY} \partial_{\mu} \psi$$

Super-Higgs mechanism: goldstino is eaten giving mass to aravitino

 ψ — goldstino \xrightarrow{SUGRA} longitudinal gravitino

Physics of Goldstino supermultiplet: (boson φ (soldstino), fermion ψ (goldstino))

SUSY \longleftrightarrow $F \equiv \langle F_{\varphi} \rangle \neq 0$ $\Phi = \varphi + \sqrt{2}\theta \psi + F_{\varphi}\theta\theta$ $\frac{1}{\sqrt{2}}(\varphi + \varphi^{\dagger}) \equiv S - \text{scalar}$ soldstino: $\mathscr{L}_{SP} \propto \frac{M_{soft}}{F} = F \sim (SUSY \text{ scale})^2$ $\frac{1}{i\sqrt{2}}(\varphi - \varphi^{\dagger}) \equiv P$ — pseudoscalar

M_{soft}: MSSM soft terms superpartner masses and trilinear couplings,

gauginos:

 $M_{\lambda}\lambda\lambda \longrightarrow \frac{M_{\lambda}}{E}SF_{\mu\nu}F^{\mu\nu}, \ \frac{M_{\lambda}}{E}PF_{\mu\nu}\tilde{F}^{\mu\nu}$

squarks, sleptons:

$$A_{ij}h_u\tilde{q}_i\tilde{u}_j \longrightarrow \frac{A_{ij}}{F}Sh_uq_iu_j, \ \frac{A_{ij}}{F}Ph_uq_iu_j$$

Dmitry Gorbunov (INR)

New physics at GeV scale?

04.03.2014. JINR 39/32

massless at tree level naturally may be light...

Light soldstinos at the new fixed-target

Why is it interesting?

- allows to probe the scale of SUSY breaking
- R-even, hence single production and decay into SM particles
- may be responsible for HyperCP anomaly in $\Sigma \rightarrow p\mu^+\mu^-$: $m_P = 214.3 \text{ MeV}$

hep-ph/0509147

Phenomenology is defined by MSSM soft terms and scale of SUSY breaking

sgoldstinos produced in heavy meson decays

1112.5230:

hep-ph/0610066 : tested at Belle (1005.1450) tested at LHCb (1303.1092)

At the beam-dump experiment

Soldstino production and lifetime

are naturally dominated by gluons

$$\tau_X = 10^{-6} \, \text{s} \times \left(\frac{\sqrt{\textit{F}}}{1000 \, \text{TeV}}\right)^4 \left(\frac{3 \, \text{TeV}}{\textit{M}_{\lambda_g}}\right)^2 \left(\frac{1 \, \text{GeV}}{\textit{m}_{\mathcal{S}, \mathcal{P}}}\right)^3$$

produced in D-meson decays fly for several kilometers and then decay into

 $X \to \gamma \gamma$, $\mu^+ \mu^-$, $\pi^+ \pi^-$, $\pi^0 \pi^0$, $e^+ e^-$

For 2 × 10²⁰ POTs we expect for number of signal $\pi^+\pi^-$ pairs in $L \simeq 100$ m detector

$$N_{\pi^+\pi^-} \simeq 2 \times \left(\frac{1000 \,\text{TeV}}{\sqrt{F}}\right)^8 \left(\frac{M_{\lambda_g}}{3 \,\text{TeV}}\right)^4 \left(\frac{m_{\mathcal{S},P}}{1 \,\text{GeV}}\right)^2$$

Dmitry Gorbunov (INR)

R-parity violating neutralinos in SUSY models

Superpotential (SUSY-invariant part) gives Yukawa-like couplings for SM fermions

$$W_{R} = \lambda_{ijk} L^a_i \varepsilon_{ab} L^b_j \bar{E}_k + \lambda'_{ijk} L^a_i \varepsilon_{ab} Q^b_j \bar{D}_k + \lambda''_{ijk} \bar{U}^{\alpha}_i \varepsilon_{\alpha\beta\gamma} \bar{D}^{\beta}_j \bar{D}^{\gamma}_k$$

Yet the proton is stable if $\lambda'' = 0$ (baryon parity), or $\lambda, \lambda' = 0$ (lepton parity) and proton is lighter than LSP: $R_p = (-1)^{(3B+L+2S)}$

But LSP is unstable in these models, so no problems with overproduction (but we need another candidate to be dark matter...)

Nevertheless cosmology and astrophysics exclude

BBN: $0.1 \text{ s} < \tau_{\text{LSP}}$ cosmic γ -rays (FERMI): $\tau_{\text{LSP}} < 10^{18} \text{ yr}$

hence, the allowed range:

$$3\times10^{-23}<(\lambda,\lambda',\lambda'')<3\times10^{-10}$$

Direct searches at LHC (and TeVatron) probe:

$$(\lambda,\lambda',\lambda'') > 10^{-6}$$

otherwise LSP decays outside ATLAS and CMS

Dmitry Gorbunov (INR)

New physics at GeV scale?

R-parity violating neutralinos at the fixed-target

The range remains to be directly tested:

 $3\times10^{-10}<(\lambda,\lambda',\lambda'')<10^{-6}$

hep-ph/0106199: "Fixed-target experiments with remote detectors can probe significantly longer lifetimes than collider experiments and are thus an ideal environment for closing this gap in sensitivity"

production in meson decays: 0905.2051probed by BaBar, Belle $B^{\pm} \rightarrow l^{\pm} \tilde{\chi}_0, B^0 \rightarrow v \tilde{\chi}_0$ R-violatingneutralinos decay into SM particles, e.g. $\tilde{\chi}_0 \rightarrow \mu^+ \mu^- v$ $\tilde{\chi}_0 \rightarrow \mu^+ \mu^- v$ R-violating $\lambda \neq 0$ was discussed after NuTeV dimuon eventshep-ex/0104037, hep-ph/0007195

Number of events at the proposed experiment with N_D *D*-mesons and detector length $L \simeq 100$ m *R*-conserving (double neutralino production)

$$N \simeq 10 \times \left(\frac{m_{\tilde{\chi}_0}}{1 \,\text{GeV}}\right)^6 \left(\frac{\lambda}{3 \times 10^{-8}}\right)^2 \left(\frac{N_D \cdot \text{Br}(D \to \tilde{\chi}_0 + \ldots)}{10^6}\right)$$

Dmitry Gorbunov (INR)

New physics at GeV scale?

ä

Massive vectors (paraphotons)

Vector portal to a secluded sector: e.g. with Dark matter Ψ one more U(1)' gauge group [spontaneously broken] in secluded sector: mixing with $U(1)_Y$ is naturally expected and unsuppressed by high energy scale 0711.4866 $\mathscr{L}_{\mathsf{DM}+\mathsf{mediator}} = \bar{\Psi} \left(i \gamma^{\mu} \partial_{\mu} - e' \gamma^{\mu} A'_{\mu} - m_{\Psi} \right) \Psi - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + \frac{m_{\gamma'}^2}{2} A'_{\mu} A'^{\mu} + \varepsilon A'_{\mu} \partial_{\nu} \frac{B^{\mu\nu}}{2} A'_{\mu\nu} A'^{\mu\nu} + \frac{m_{\gamma'}^2}{2} A'_{\mu\nu} A'_{\mu\nu} + \frac{m_{\gamma'}^2}{2} A'_{\mu\nu} + \frac$ when $m_{\Psi} > m_{\gamma} \sim 1 \text{ GeV}$ Cosmology: SINDRUM ae KLOE 10^{-2} Limits from BBN: WASA HADES APEX A1 BaBa 10^{-3} $\tau_V < 1s, \implies \epsilon^2 \left(\frac{m_{\gamma'}}{1 \, \text{GeV}} \right) \gtrsim 10^{-21}$ E774 E141 10^{-4} ν -Cal I (π^0) • For DM particles to be in thermal 10^{-5} v-Cal I equilibrium in primordial plasma: D-Bremsstrahlung) KEK 10-6 $\varepsilon^2 \left(\frac{m_{\gamma'}}{1 \text{ GeV}} \right) \gtrsim 10^{-11} \times \left(\frac{m_{\Psi}}{500 \text{ GeV}} \right)^2$ Orsay 10-7 NOMAE & PS191 CHARM E137 $\sigma \propto \epsilon^2$ Production by virtual photon $\Gamma \propto \epsilon^2$ Decay through virtual photon, 10^{-2} 10^{-1} $V \rightarrow e^+e^-$, $\mu^+\mu^-$, etc $m_{\gamma'}$ [GeV] 1311.5104 New physics at GeV scale? 04.03.2014, JINR 43/32 Dmitry Gorbunov (INR)

Paraphotons: improvement of CHARM

$$\mathscr{L}_{\mathsf{DM+mediator}} = \bar{\Psi} \left(i \gamma^{\mu} \partial_{\mu} - e' \gamma^{\mu} A'_{\mu} - m_{\Psi} \right) \Psi - \frac{1}{4} A'_{\mu\nu} A'^{\mu\nu} + \frac{m_{\gamma'}^2}{2} A'_{\mu} A'^{\mu} + \varepsilon A'_{\mu} \partial_{\nu} B^{\mu\nu}$$

when $m_{\Psi} > m_{\gamma'} \sim 1 \, {
m GeV}$

Constraints on mixing $\boldsymbol{\varepsilon}$

 Limits from above: decays before reaching CHARM

$$L_{\text{CHARM}} = 400 \,\text{m} > l_{\text{decay}} \propto \frac{1}{\epsilon^2 \, m_{\gamma'}^2}$$

L = 50 m, hence a factor of 3 improvement

 Limits from below: too few events in CHARM

$$\sigma_{\rm production} \propto \epsilon^2$$
, $\Gamma_{\rm decay} \propto \epsilon^2$

Luminosity, geometry,... 2 orders of magnitude improvement

Dmitry Gorbunov (INR)

New physics at GeV scale?