

An Experiment to Search for Hidden Particles at the SPS

Richard Jacobsson on behalf of the SHiP Collaboration

Discovery Physics at the LHC Era, Kruger, South Africa, December 1 - 6, 2014

No tangible evidence for the scale of the new physics!

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

R. Jacobsson

Physics Situation after LHC Run 1

With a mass of the Higgs boson of 125 – 126 GeV, the Standard Model may be a selfconsistent weakly coupled effective field theory up to very high scales (possibly up to the Planck scale) without adding new particles

→ No need for new particles up to Planck scale!?

Experimental evidence for New Physics

- 1. Neutrino oscillations: tiny masses and flavour mixing
 - \rightarrow Requires new degrees of freedom in comparison to SM
- 2. Baryon asymmetry of the Universe

→ Measurements from BBN and CMB $\eta = \left\langle \frac{n_B}{n_\gamma} \right\rangle_{T=3K} \sim \left\langle \frac{n_B - n_{\overline{B}}}{n_B + n_{\overline{B}}} \right\rangle_{T\geq 1 \text{ GeV}} \sim 6 \times 10^{-10}$

→ Current measured CP violation in quark sector → $\eta \sim 10^{-20}$!!

- 3. Dark Matter from indirect gravitational observations
 - \rightarrow Non-baryonic, neutral and stable or long-lived
- 4. Dark Energy and Inflation

Theoretical "evidence" for New Physics

- 1. Hierarchy problem and stability of Higgs mass
- 2. SM flavour structure
- 3. Strong CP problem
- 4. Unification of coupling constants
- 5. Gravity
- 6. ..

→ While we had unitarity bounds for the Higgs, no such indication on the next scale.... Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

What if...?

What about solutions to (some) these questions below Fermi scale?

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

R. Jacobsson

CERN

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

5

R. Jacobsson

New Physics prospects in Hidden Sector

CERN

Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - → Interaction with 'mirror world' constituting dark matter

• D = 2: Higgs portal

- Mass mixing with dark singlet scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$
- $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \rho \sin \rho \\ \sin \rho & \cos \rho \end{pmatrix} \begin{pmatrix} \phi'_0 \\ S' \end{pmatrix}$

➔ Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

• D = 5/2: Neutrino portal

- Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$
- → Neutrino oscillation, baryon asymmetry, dark matter

• D = 4: Axion portal

- Mixing with Axion Like Particles, pseudo-scalars pNGB, axial vectors : $\frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
- → Solve strong CP problem, Inflaton
- And possibly higher dimensional operator portals and SUper-SYmmetric portals (light neutralino, light sgoldstino,...)
 - → SUSY parameter space explored by LHC
 - → Some of SUSY low-energy parameter space open to complementary searches

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

HS Common experimental features

- Cosmologically interesting and experimentally accessible $m_{HS} \sim O(MeV GeV)$
 - → Production through meson decays (π , K, D, B), proton bremsstrahlung,...
 - → Decay to l^+l^- , $\pi^+\pi^-$, $l\pi$, $l\rho$, $\gamma\gamma$, etc (and modes including neutrino)
 - → Full reconstruction and particle ID aim at maximizing the model independence
- Production and decay rates are very suppressed relative to SM
 - Production branching ratios $O(10^{-10})$
 - Long-lived objects
 - Travel unperturbed through *ordinary* matter
 - → Challenge is background suppression
- → Fixed-target ("beam-dump") experiment
 - → Large number of protons on target and large decay volume!
 - Complementary physics program to searches for new physics by LHC!
 - → For development of experimental facility, initial detector concept, and sensitivity studies: neutrino portal and the vector portal used

Ex. "Neutral Fermion" Portal - Ockham's Razor

- $Y_{I\ell}H^{\dagger}\overline{N}_{I}L_{\ell}$ lepton flavour violating term results in mixing between N_{I} and SM active neutrinos when the Higgs SSB develops the $\langle VEV \rangle = v \sim 246 \ GeV$ of P
 - → Oscillations in the mass-basis and CP violation
 - → Type I See-Saw with $m^R >> m_D (= Y_{I\ell} v)$

• Four "popular" *N* mass ranges:

ສາ strong coupling		N mass	v masses	eV v anoma– lies	BAU	DM	M _H stability	direct search	experi– ment
B 10 ⁻⁵ neutrino masses are too large	GUT see-saw	^{10–16} 10 GeV	YES	NO	YES	NO	NO	NO	_
neutrino masses are too small,	EWSB	2-3 10 GeV	YES	NO	YES	NO	YES	YES	LHC
$10^{-17} \begin{array}{c} & & & \\ 10^{-13} & 10^{-7} & 0.1 & 10^5 & 10^{11} & 10^{17} \\ & & & & & & \\ & & & & & & \\ & & & & $	ν MSM	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
LSND VMSM LHC GUT see-saw Majorana mass, GeV	v scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND
biscovery Physics at the LHC Era, Kruger, Sou	th Africa,	Decemb	per 1-6 2	014			R.	Jacob	sson

Role of N_1 with a mass of $\mathcal{O}(\text{keV})$ \rightarrow Dark Matter

Role of N_2 and N_3 with a mass of $\mathcal{O}(m_q/m_{l^{\pm}})$ (100 MeV – GeV): → Neutrino oscillations and mass, and BAU

→ Assumption that N_l are $\mathcal{O}(m_q/m_l)$: <u>No new energy scale!</u>

$$Y_{I\ell} = O\left(\frac{\sqrt{m_{atm}m_I^R}}{v}\right) \sim 10^{-8} \quad (m^R = 1 \text{ GeV}, m_v = 0.05 \text{ eV})$$

• $\mathcal{U}^2 \sim 10^{-11}$ \rightarrow Intensity Frontier!

Current limits on N_2 and N_3

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

9

CERN

N_2 and N_3 in vMSM

• N_1 as DM ($M_{N_1} \ll M_{N_2} \approx M_{N_3}$) gives no contribution to active neutrino masses

- ➔ Neglect for the rest
- → Reduces number of effective parameters for Lagrangian with $N_{2,3}$
 - 18 parameters → 11 new parameters with 3 CP violating phases
 - → Two mixing angles related to active neutrinos and mass difference measured in low-energy neutrino experiment

• Generation of BAU with degenerate N_2 and N_3 (Akhmedov, Rubakov, Smirnov; Asaka, Shaposhnikov)

- 1. Leptogenesis from coherent resonant oscillations with interference between CP violating amplitudes
 - ➔ Two fermion singlets should be quasi-degenerate
- 2. Out of equilibrium ($\Gamma_{N_{2,3}}$ < Hubble rate of expansion) at the E.W. scale above sphaleron freeze-out
- 3. Lepton number of active left-handed neutrinos transferred to baryon number by sphaleron processes
 - $\mathbb{L}_{\ell} \frac{\mathbb{B}}{3}$ remain conserved while \mathbb{L}_{ℓ} and \mathbb{B} are violated individually

R. Jacobsson

Production and decay in νMSM

• **Production:** Mixing with active neutrino from leptonic/semi-leptonic weak decays of mesons

E.g.

 $Br(D \to NX) \sim 10^{-8} - 10^{-12}$

• **Decay:** Very weak HNL-active neutrino mixing $\rightarrow N_{2,3}$ much longer lived than SM particles

- → $N \rightarrow \mu e \nu, \pi^0 \nu, \pi e, \mu \mu \nu, \pi \mu, K e, K \mu, \eta \nu, \eta' \nu, \rho \nu, \rho e, \rho \mu, ...$
- → Typical lifetimes > 10 µs for $M_{N_{2,3}} \sim 1 \text{ GeV}$ → Decay distance O(km)

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %
$N_{2,3} \rightarrow \nu + \mu + e$	1 - 10 %

R. Jacobsson

Experimental Requirements/Challenges

Proposal: fixed-target (beam dump like) experiment at the SPS

- 1. E.g. sensitivity to HNL $\propto U^4 \rightarrow$ Number of protons on target (p.o.t.)
 - → SPS: $4x10^{13}$ / 7s @ 400 GeV = 500 kW → $2x10^{20}$ in 5 years (similar to CNGS)
- 2. Preference for relatively slow beam extraction O(ms 1s) to reduce detector occupancy
 - ➔ Reduce combinatorial background
- 3. As uniform extraction as possible for target and combinatorial background/occupancy
- 4. Heavy material target to stop π , K before decay to reduce flux of active neutrinos
 - → Blow up beam to dilute beam energy on target
- 5. Long muon shield to range out flux of muons
- 6. Away from tunnel walls to reduce neutrino/muon interactions in proximity of detector
- 7. Vacuum in detector volume to reduce neutrino interactions
- 8. Detector acceptance compromise between lifetime and production angles
 - ...and length of shield to filter out muon flux

Defines the list of critical parameters and layout for the sensitivity of the experiment

- → Incompatible with conventional neutrino facility
- → But a very powerful general-purpose facility for now and later!

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Schematic Principle of Experimental Setup

above threshold

10

10

E_{beam}=400 GeV

ERI

Non-prompt muons

u not from D

μ from D

Allimuonis -Sum all i

u fr<mark>ē</mark>m л

μ from K Prompt muons

- Initial reduction of beam induced background: \odot
 - Heavy target ٠
 - Hadron absorber ۲
 - Muon filter (Without: Rate at detector 5x10⁹ muons / 5x10¹³ p.o.t.) Ö

Schematic Principle of Experimental Setup

Residual backgrounds:

- 1. <u>Neutrinos scattering</u> (e.g. $v_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi v$) \rightarrow Detector under vacuum, accompanying charged particles (timing), topological
- 2. <u>Muon inelastic scattering</u> → Accompanying charged particles (timing), topological
- 3. Muon combinatorial (e.g. $\mu\mu$ with μ mis-ID) \rightarrow Tagging, timing and topological

Generic setup, not to scale!

Schematic Principle of Experimental Setup

Residual backgrounds:

- 1. <u>Neutrinos scattering</u> (e.g. $v_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi v$) \rightarrow Detector under vacuum, accompanying charged particles (timing), topological
- 2. <u>Muon inelastic scattering</u> → Accompanying charged particles (timing), topological
- 3. Muon combinatorial (e.g. $\mu\mu$ with μ mis-ID) \rightarrow Tagging, timing and topological

Generic setup, not to scale!

Experimental setup

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

16

CERN

Initial Detector Concept for EOI

- Reconstruction and particle identification of final states with e, μ , π^{\pm} , γ
 - Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter in large hall
 - Long vacuum vessel, O(5) m diameter, O(50) m length
 - 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Initial Detector Concept for EOI

- Reconstruction and particle identification of final states with e, μ , π^{\pm} , γ
 - Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter in large hall
 - Long vacuum vessel, 5 m diameter, 50 m length
 - 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Example of estimates of HNL sensitivity

- Colliders out of luck with low mass / long lifetimes
 - LHC (\sqrt{s} = 14 TeV): with 1 ab⁻¹, i.e. 3-4 years: ~ 2x10¹⁶ D's in 4 π
 - SPS@400 (\sqrt{s} = 27 GeV) with 2x10²⁰ pot, i.e. ~5 years: ~ 2x10¹⁷ D's
 - BELLE-2 using $B \rightarrow XlN$, where $N \rightarrow l\pi$ and X reconstructed using missing mass may go well below 10⁻⁴ in 0.5<M_N<5 GeV

 SHiP sensitivity based on current SPS with 2x10²⁰ p.o.t at 400 GeV in ~5 years of nominal CNGS-like operation

- W → *l*N at LHC: extremely large BG, difficult triggering/analysis.
- Z → Nv at e⁺e⁻ collider [M. Bicer et al. 2013]: clean

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

R. Jacobsson

Ex. Sensitivity to light scalar

Production via meson decay

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

21

CERN

- Expecting $\mathcal{O}(3500) v_{\tau} / \overline{v_{\tau}}$ interactions in 6 tons of emulsion target
 - Tau neutrino and anti-neutrino physics

Charm physics with neutrinos and anti-neutrinos

- → ν_{μ} induced charm production: 11 000 events(2000 in CHORUS)
- $\rightarrow \overline{\nu_{\mu}}$ induced charm production: 3500 events (32 events in CHORUS)
- Electron neutrino studies (high energy cross-section and v_e induced charm production ~ 2 x v_{μ} induced)
 - ➔ Normalization for hidden particle search!
- → Negligible loss of acceptance for Hidden Sector detector
- → Hidden Particle detector function as forward spectrometer for v_{τ} physics program
- → Use of calorimeter/muon detector allow tagging neutrino NC/CC interactions → normalization

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

CERN Task force

Initiated by CERN Management after SPSC encouragement in January 2014

Detailed investigation

- Physics motivation and requirements
- Experimental Area
- SPS configuration and beam time
- SPS beam extraction and delivery
- Target station
- Civil engineering
- Radioprotection
- Aimed at overall feasibility, identifying options/issues, resource estimate
- → Document completed with 80 pages on July 2
- → Detailed cost, manpower and schedule
- → Compatible with commissioning runs in 2022, data taking 2023

	1369559	1.0	RELEASE			
X	EN	REFERENCE EN-DH-2014-007				
N 211 Geneva 23 zerland	eering Department					
	bening bepartment		Date : 2014-07-02			
	Depart					
	Report					
A new Expe	riment to Searc	h for H	lidden			
	Particles (SHIP)					
at	the SDS North A	rea				
al	the SPS North A	rea				
Prelimin	ary Project and Cost	Estimat	e			
		Lotiniat	-			
The scope of the recent	y proposed experiment Search for	Heavy Neutra	al Leptons, EOI-0			
The scope of the recentl includes a general Sear	y proposed experiment Search for ch for HIdden Particles (SHIP) as y	Heavy Neutra well as some	al Leptons, EOI-0 aspects of neutr			
The scope of the recentl includes a general Sear physics. This report des	ly proposed experiment Search for ch for HIdden Particles (SHIP) as r cribes the implications of such an e	Heavy Neutra well as some xperiment fo	al Leptons, EOI-0 aspects of neutr r CERN.			
The scope of the recentl includes a general Sear physics. This report des	ly proposed experiment Search for ch for HIdden Particles (SHIP) as r cribes the implications of such an e	Heavy Neutra well as some xperiment fo	al Leptons, EOI-0 aspects of neutr r CERN.			
The scope of the recentl includes a general Sear physics. This report des	ly proposed experiment Search for ch for HIdden Particles (SHIP) as n cribes the implications of such an e	Heavy Neutra well as some xperiment fo	al Leptons, EOI-0 aspects of neutr r CERN.			
The scope of the recentl includes a general Sear physics. This report des	y proposed experiment Search for ch for HIdden Particles (SHIP) as n cribes the implications of such an e	Heavy Neutra well as some xperiment for	al Leptons, EOI-0 aspects of neutr r CERN.			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani,	y proposed experiment Search for ch for HIdden Particles (SHIP) as n cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet,	Heavy Neutra well as some xperiment for DOCUME F.Bord	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier,			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon,	y proposed experiment Search for ch for HIdden Particles (SHIP) as in cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval,	Heavy Neutra well as some xperiment for DOCUME F.Boro M.J.Jime	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles,			
The scope of the recentl includes a general Sean physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin,	DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, D.Forkel-Wirth, D.Forkel-Wirth,	Heavy Neutra well as some xperiment for DOCUME F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sean physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne,	DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Connini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito,	Heavy Neutra well as some xperiment for DOCUME F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke,	y proposed experiment Search for ch for HIdden Particles (SHIP) as u cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen,	Heavy Neutra well as some xperiment for DOCUME F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	y proposed experiment Search for ch for HIdden Particles (SHIP) as v cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile,	Heavy Neutra well as some xperiment for DOCUME F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: Iry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Heavy Neutra well as some xperiment for DOCUME F.Borc M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: fry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report desi DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	y proposed experiment Search for ch for HIdden Particles (SHIP) as a cribes the implications of such an e S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Heavy Neutra well as some xperiment for DOCUME F.Borc M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: fry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	y proposed experiment Search for ch for HIdden Particles (SHIP) as o cribes the implications of such an e S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Heavy Neutra well as some xperiment for Docume F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. NT APPROVED BY: dry, P.Collier, nez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	y proposed experiment Search for ch for HIdden Particles (SHIP) as u cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Heavy Neutra well as some xperiment for Docume F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. MTAPPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant			
The scope of the recentl includes a general Sear physics. This report des DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	y proposed experiment Search for ch for HIdden Particles (SHIP) as n cribes the implications of such an e DOCUMENT CHECKED BY: S.Baird, O.Brüning,J-P.Burnet, E.Cennini,P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Heavy Neutra well as some xperiment for Docume F.Boro M.J.Jime R.Sal	al Leptons, EOI-0 aspects of neutr r CERN. MT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant			

CERN Accelerator Complex

• Proposed location by CERN beams and support departments

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

24

ĊĔŔŇ

Prevessin North Area site

• From task force report:

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Schedule and Technical Proposal

• Aim full force at submitting TP at beginning April 2015

• Design of facility must start next summer (CE, beam, target, infra)

¹Authors are listed on the following page

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

CERN

Conclusion

Proposed GP experiment for HS exploration in largely unexplored domain

- Very much increased interested for Hidden Sector after LHC Run 1
- A very significant physics reach beyond past/current experiments in the cosmologically interesting region
- Also unique opportunity for v_{τ} physics
- Work towards Technical Proposal in full swing
 - Signal background studies and optimization, detector specification, simulation and some detector R&D
 Full detector including muon filter and surrounding structures implemented in GEANT: FairSHIP!
 - Optimization of Experimental Facility beam line, target, and muon filter, RP, overall layout
- At SHiP Collaboration Meeting in September, ~30 institutes agreed to provide a "letter of intent" as basis for the formalization of the Collaboration at meeting on 15 December 2014.
 - Others in the pipeline to join later for TDR
- TP will be complemented by a "Physics Proposal"
 - Prepared mainly by a large group of invited theorists
 - Contains a description of the complete physics program, and extensions beyond SHiP
- Facility and physics case based on the current injector complex and SPS
 - 2x10²⁰ at 400 GeV in 5 nominal years by "inheriting" CNGS share of the SPS beam time from 2023
- Proposed experiment perfectly complements the searches for New Physics at the LHC

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Reserve slides

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Thermal History in ν MSM

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

vMSM N_1 = Dark Matter

• Assume lightest singlet fermion N_1 has a very weak mixing with the other leptons

- Mass $M_1 \sim O(keV)$ and very small coupling
 - → Sufficiently stable to act as Dark Matter candidate
 - → Give the right abundance
 - → Decouples from the primordial plasma very early
- Produced relativistically out of equilibrium in the radiation dominant epoque → erase density fluctuations below free-streaming horizon → sterile neutrinos are redshifted to be non-relativistic before end of radiation dominance (Warm Dark Matter → CDM)
 - → Decaying Dark Matter

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Dark Matter Constraint and Search

- CERN
- Tremaine-Gunn bound: average phase-space density for fermionic DM particles cannot exceed density given by Pauli exclusion principle
 - → For smallest dark matter dominated objects such as dwarf spheroidal galaxies of the Milky Way
- 2. X-ray spectrometers to detect mono-line from radiative decay
 - Large field-of-view ~ ~ size of dwarf spheroidal galaxies ~ 1°
 - Resolution of $\frac{\Delta E}{E} \sim 10^{-3} 10^{-4}$ coming from width of decay line due to Doppler broadening
 - → Proposed/planned X-ray missions: Astro-H, LOFT, Athena+, Origin/Xenia
- 3. Lyman- α forest
 - Super-light sterile neutrino creates cut-off in the power spectrum of matter density fluctuations due to subhorizon free-streaming $d_{FS} \sim 1 \text{ Gpc } m_{eV}^{-1}$
 - Fitted from Fourier analysis of spectra from distant quasars propagating through fluctuations in the neutral hydrogen density at redshifts 2-5

Ben Moore

Intriguing hints from galaxy spectrum?

• Two recent publications:

- → arXiv:1402.2301 : Detection of an unidentified emission line in the stacked XMM-Newton X-ray spectra of Galaxy Clusters at $E_{\gamma} \sim (3.55 - 3.57) \pm 0.03 keV$
- → arXiv:1402.4119 : An unidentified line in the X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster at $E_{\gamma} \sim 3.5 \ keV$

Confirmation by Astro-H with better energy resolution required

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Constraints in Variants of HNLs

- 1. vMSM: HNLs are required to explain neutrino masses, BAU, and DM
 - *U*² is the most constrained
- 2. HNLs are required to explain neutrino masses and BAU
 - N_1 , N_2 and N_3 are available to produce neutrino oscillations/masses and BAU
- 3. HNLs are required to explain neutrino masses
 - Only experimental constraints remain
- 4. HNLs are required to explain Dark Matter
- 5. HNLs are helpful in cosmology and astrophysics
 - E.g. HNL may influence primordial abundance of light elements
 - E.g. HNL with masses below 250 MeV can facilitate the explosions of the supernovae
- HNLs are not required to explain anything just so
 - Contributions of the HNL to the rare lepton number violating processes $\mu \to e,\, \mu \to eee$

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014

Expected Event Yield $N_{2,3} \rightarrow \mu \pi$

- Integral mixing angle $\mathcal{U}^2 = \mathcal{U}_e^2 + \mathcal{U}_\mu^2 + \mathcal{U}_\tau^2$
- A conservative estimate of the sensitivity is obtained by considering only the decay $N_{2,3} \rightarrow \mu \pi$ with production mechanism $D \rightarrow \mu N_{2,3} X$, which probes \mathcal{U}^4_{μ}
 - Benchmark model II with predominant muon flavour coupling (arXiv:0605047)
- Expected number of signal events

 $N_{signal} = n_{pot} \times 2\chi_{cc} \times Br(\mathcal{U}_{\mu}^{2}) \times \varepsilon_{det}(\mathcal{U}_{\mu}^{2})$

 $n_{pot} = 2 \times 10^{20}$ $\chi_{cc} = 0.45 \times 10^{-3}$

- $Br(\mathcal{U}^2_{\mu}) = Br(D \to \mu N_{2,3}X) \times Br(N_{2,3} \to \mu \pi),$
 - $Br(N_{2,3} \rightarrow \mu\pi)$ is assumed to be 20%
 - $Br(D \to NX) \sim 10^{-8} 10^{-12}$
- ε_{det}(U²_μ) is the probability that N_{2,3} decays in the fiducial volume, and μ and π are reconstructed
 → Detection efficiency entirely dominated by the geometrical acceptance (8 × 10⁻⁵ for τ_N = 1.8 × 10⁻⁵s)

Ex. Expected Sensitivity to $N_{2,3} \rightarrow \mu \pi$

Sensitivity based on current SPS with 2x10²⁰ p.o.t in ~5 years of CNGS-like operation

- Ex. $U_{\mu}^2 = 10^{-7}$ (corresponding to strongest current experimental limit for $M_{N_{2,3}} = 1 \text{ GeV}$) ($\tau_N = 18 \, \mu s$)
- → ~12k fully reconstructed $N_{2,3} \rightarrow \mu \pi$ events are expected for $M_{N_{2,3}} = 1 \ GeV$
- → ~120 events for cosmologically favoured region: $U_{\mu}^2 = 10^{-8}$ and $\tau_N = 180 \ \mu s$

Discovery Physics at the LHC Era, Kruger, South Africa, December 1-6 2014