

An Experiment to Search for Hidden Particles at the SPS

Richard Jacobsson

on behalf of the SHIP Collaboration

Seminar at University of Sofia, Bulgaria, October 6, 2014

→ Standard Model success: Higgs!

Seminar at University of Sofia, Bulgaria, October 6, 2014

R. Jacobsson

SM Validity

- Requirement that the E.W. vacuum be the minimum of the potential up to a scale Λ , implies that $\lambda(\mu) > 0$ for any $\mu < \Lambda$.
- $M_H = 125.5 \pm 0.2_{stat-0.6 syst}^{+0.5} GeV$ (ATLAS) / $M_H = 125.7 \pm 0.3_{stat} \pm 0.3_{syst} GeV$ (CMS)
 - $m_H < 175 \ GeV$: Landau pole in the self-interaction is above the quantum gravity scale $M_{Pl} \sim 10^{19} \ GeV$
 - $m_H > 111 \text{ GeV}$: Electroweak vacuum is sufficiently stable with a lifetime >> τ_{Universe}

Higgs Discovery

It looks very much like THE Higgs boson:

• To be done

- Measure more precisely fermion couplings
- Measure triple and quartic gauge couplings to reconstruct vacuum potential

Physics Situation after LHC Run 1

- With a mass of the Higgs boson of 125 126 GeV, the Standard Model may be a selfconsistent weakly coupled effective field theory up to very high scales (possibly up to the Planck scale) without adding new particles
 - → No need for new particles up to Planck scale!?

Experimental evidence for New Physics

- Neutrino oscillations: tiny masses and flavour mixing 1.
 - → Requires new degrees of freedom in comparison to SM
- Baryon asymmetry of the Universe 2.
 - \rightarrow Measurements from BBN and CMB $\eta = \left\langle \frac{n_B}{n_Y} \right\rangle_{T=3K} \sim \left\langle \frac{n_B n_{\overline{B}}}{n_B + n_{\overline{B}}} \right\rangle_{T>1 \ GeV} \sim 6 \times 10^{-10}$
 - → Current measured CP violation in guark sector → $\eta \sim 10^{-20}$!!
- Dark Matter from indirect gravitational observations 3.
 - \rightarrow Non-baryonic, neutral and stable or long-lived
- Dark Energy and Inflation 4.

Theoretical "evidence" for New Physics

- Hierarchy problem and stability of Higgs mass 1.
- SM flavour structure 2.
- Strong CP problem 3.
- Gravity 4.
- 5.

→ While we had unitarity bounds for the Higgs, no such indication on the next scale....

Seminar at University of Sofia, Bulgaria, October 6, 2014

Very intriguing situation! Multitude of "solutions" to these questions

- → Search for Beyond Standard Model physics at the LHC, FHC (Energy Frontier):
 - · Continued direct searches for new particles
 - Higgs and top (EW) precision physics
 - Flavour precision physics

Seminar at University of Sofia, Bulgaria, October 6, 2014

What did we not find...

ATLAS Exotics Searches* - 95% CL Exclusion

Status: April 2014

	Model	<i>ℓ</i> ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	Model ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell/\gamma\gamma$ ADD QBH $\rightarrow \ell q$ ADD BH high N_{trk} ADD BH high Σ_{PT} RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow VW \rightarrow \ell \nu\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ S^1/Z_2 ED UED	$\begin{array}{c} \ell, \gamma \\ \\ 2\gamma \text{ or } 2e, \mu \\ 1 e, \mu \\ 2 \mu (SS) \\ 2 e, \mu \\ 2 \gamma \end{array}$	Jets 1-2 j - 1 j - 2 j or - 4 b ≥ 1 b, ≥ 1 J, -	Emiss Yes - - - - Yes /2j Yes - Yes	∫£ dt[fb 4.7 4.7 20.3 20.3 20.3 20.3 1.0 4.7 19.5 14.3 5.0 4.8	-1] Mass limit Mo 4.37 TeV Ms 4.37 TeV Ms 4.18 TeV Min 5.2 TeV Min 5.7 TeV GKK mass 2.47 TeV GKK mass 2.47 TeV GKK mass 590-710 GeV KK mass 0.5-2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.41 TeV	$\begin{split} n &= 2\\ n &= 3 \text{ HLZ NLO}\\ n &= 6\\ n &= 6, M_D = 1.5 \text{ TeV, non-rot BH}\\ n &= 6, M_D = 1.5 \text{ TeV, non-rot BH}\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 0.1\\ k/\overline{M}_{Pl} &= 1.0\\ \text{BR} &= 0.925 \end{split}$	Reference 1210.4491 1211.1150 1311.2006 1308.4075 ATLAS-CONF-2014-016 ATLAS-CONF-2013-017 1203.0718 1208.2880 ATLAS-CONF-2014-005 ATLAS-CONF-2013-0152 1209.2535 ATLAS-CONF-2013-0152
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{EGM}\; W' \to WZ \to \ell\nu\; \ell'\ell' \\ \mathrm{LRSM}\; W'_R \to t\bar{b} \end{array}$	2 e,μ 2 τ 1 e,μ 3 e,μ 1 e,μ	– – – 2 b, 0-1 j	– Yes Yes Yes	20.3 19.5 20.3 20.3 14.3	Z' mass 2.86 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.84 TeV		ATLAS-CONF-2013-017 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 ATLAS-CONF-2014-015 ATLAS-CONF-2013-050
CI	Cl qqqq Cl qqℓℓ Cl uutt	- 2 e, μ 2 e, μ (SS)	2 j _ ≥ 1 b, ≥ 1	– – j Yes	4.8 5.0 14.3	A 7.6 TeV A 13. A 3.3 TeV	$\eta = +1$ 9 TeV $\eta_{LL} = -1$ C = 1	1210.1718 1211.1150 ATLAS-CONF-2013-051
DM	EFT D5 operator EFT D9 operator	-	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 80 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	ATLAS-CONF-2012-147 1309.4017
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	eta=1 eta=1 eta=1 eta=1	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 <i>e</i> , μ 1 <i>e</i> , μ 2 <i>e</i> , μ 2 <i>e</i> , μ (SS)	$ \begin{array}{l} \geq 2 \ b, \geq 4 \\ \geq 1 \ b, \geq 3 \\ \geq 2 \ b \\ \geq 1 \ b, \geq 1 \\ \geq 1 \ b, \geq 1 \end{array} $	j Yes j Yes _ j Yes	14.3 14.3 14.3 14.3	T mass 790 GeV T mass 670 GeV B mass 725 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2013-056 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 –	– – IjYes –	20.3 13.0 4.7 13.0	q* mass 3.5 TeV q* mass 3.84 TeV b* mass 870 GeV /* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 ATLAS-CONF-2012-148 1301.1583 1308.1364
Other	LRSM Majorana ν Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	2 e,μ 2 e,μ 2 e,μ (SS) - - -	2 j - - - 7 TeV	_ _ _ _ _	2.1 5.8 4.7 4.4 2.0 8 TeV	N ⁰ mass 1.5 TeV N [±] mass 245 GeV H ^{±±} mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV 10 ⁻¹ 1 1	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e = 0.055, V_p = 0.063, V_\tau = 0 \\ \text{DY production, BR}(H^{\pm\pm} \rightarrow \ell \ell) = 1 \\ \text{DY production, } q = 4e \\ \text{DY production, } g = 1g_D \\ 0 \end{split}$	1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
							Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

Seminar at University of Sofia, Bulgaria, October 6, 2014

 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

ATLAS Preliminary

Precision Flavour Physics

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \delta C[\frac{\epsilon^{NP}}{\Lambda_{NP}^2}] \qquad \sigma_{stat+sys+th} < \delta C[\frac{\epsilon^{NP}}{\Lambda_{NP}^2}]$$

• Low-energy probes exceed the reach of the direct searches at the high-energy frontier

Most stringent general bounds on the scale of New Physics from mixing

What if...?

What about solutions to (some) these questions below Fermi scale?

R. Jacobsson

ERI

Seminar at University of Sofia, Bulgaria, October 6, 2014

- New light hidden particles are singlet under the SM gauge group
- Composite operators (hoping there is not just gravity...) $\mathcal{L}_{mediation} =$

- Lowest dimension SM operator makes up "portals" to the Hidden Sector
 - 1. "Indirect detection" through portals in (missing mass)
 - 2. "Direct detection" through both portals in and out

Many different possibilities for Hidden Sector

Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - → Interaction with 'mirror world' constituting dark matter
- D = 2: Higgs portal
 - Mixing with dark scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$

➔ Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

- D = 5/2: Neutrino portal, e.g. vMSM
 - Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$
 - → Neutrino oscillation, baryon asymmetry, dark matter
- D = 4: Axion portal
 - Mixing with axion like particles, pseudo-scalars, axial vectors : $\frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
 - → Solve strong CP problem
- And possibly higher dimensional operator portals and super-symmetric portals (light neutralino, light sgoldstino,...)
 - → SUSY parameter space explored by LHC
 - → Some of SUSY low-energy parameter space open to complementary searches

HS Common experimental features

- Cosmologically interesting and experimentally accessible $m_{HS} \sim O(MeV GeV)$
 - → Production through meson decays (π , K, D, B), proton bremsstrahlung,...
 - → Decay to l^+l^- , $\pi^+\pi^-$, $l\pi$, $l\rho$, $\gamma\gamma$, etc (and modes including neutrino)
 - → Full reconstruction and particle ID aim at maximizing the model independence
- Production and decay rates are very suppressed relative to SM
 - Production branching ratios $O(10^{-10})$
 - Long-lived objects
 - Travel unperturbed through ordinary matter
 - Challenge is background suppression

→ Fixed-target ("beam-dump") experiment

- → Large number of protons on target and large decay volume!
- → Complementary physics program to searches for new physics by LHC!

For development of experimental facility and detector concept, and sensitivity studies neutrino portal and the vector portal

- Introduce three neutral fermion singlets right-handed Majorana leptons N_I with Majorana mass $m_I^R \equiv$ "Heavy Neutral Leptons (HNL)" Minkowski 1977
 - Make the leptonic sector similar to the quark sector

Minkowski 1977 Yanagida 1979 Gell-Mann, Ramond, Slansky 1979 Glashow 1979

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{\substack{I=1,2,3;\\\ell=1,2,3(e,\mu,\tau)}} i\overline{N}_I \partial_\mu \gamma^\mu N_I - Y_{I\ell} H^{\dagger} \overline{N}_I L_{\ell} - m_I^R \overline{N}_I^c N_I + h.c$$

where L_{ℓ} are the lepton doublets, Φ is the Higgs doublet, and $Y_{I\ell}$ are the corresponding new Yukawa couplings

● Discovery of Higgs vital for the see-saw model! → Responsible for the Yukawa couplings!

Type I See-saw

(ወ)

 \mathcal{V}_i

Y_{Iℓ}H[†]N_IL_ℓ lepton flavour violating term results in mixing between N_I and SM active neutrinos when the Higgs SSB develops the < VEV > = v ~ 246 GeV
 → Oscillations in the mass-basis and CP violation

- Type I See-saw with $m^R >> m_D(=Y_{I\ell}v) \rightarrow$ superposition of chiral states give
 - → Active neutrino ($\nu = U_{\nu}(\nu_L + \theta \nu_R^c)$) mass in mass basis $\widetilde{m}_1 \sim \frac{m_D^2}{m^R} \sim m_{\nu}$
 - → Heavy singlet fermion mass in mass basis $\widetilde{m}_2 \sim m^R \left(1 + \frac{m_D^2}{m^R^2}\right) \sim m^R \sim M_N$

• Four "popular" *N* mass ranges:

arXiv:1204.5379

N

N

 v_i

guild	strong coupling		N mass	v masses	eV v anoma– lies	BAU	DM	M _H stability	direct search	experi– ment
va couj	neutrino masses are too large	GUT see-saw	^{10–16} 10 GeV	YES	NO	YES	NO	NO	NO	-
May 10-9 10-13	neutrino masses are too small.	EWSB	2-3 10 GeV	YES	NO	YES	NO	YES	YES	LHC
10 ⁻¹⁷ 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v MSM	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
L	SND V MSM LHC GUT see-saw Majorana mass, GeV	v scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND

Seminar at University of Sofia, Bulgaria, October 6, 2014

R. Jacobsson

$\nu {\sf MSM}$ (Asaka, Shaposhnikov: hep-ph/05050

• Assumption that N_I are $\mathcal{O}(m_q/m_{l^{\pm}})$

→ Consequence: Yukuawa couplings are very small

•
$$Y_{I\ell} = O\left(\frac{\sqrt{m_{atm}m_I^R}}{v}\right) \sim 10^{-8} \quad (m^R = 1 \text{ GeV}, m_v = 0.05 \text{ eV})$$

→ Experimental challenge → Intensity Frontier

Role of N_1 with a mass of $\mathcal{O}(\text{keV})$ \rightarrow Dark Matter

Role of N_2 and N_3 with a mass of $\mathcal{O}(m_q/m_{l^{\pm}})$ (100 MeV – GeV): → Neutrino oscillations and mass, and BAU

→ No new energy scale!

Seminar at University of Sofia, Bulgaria, October 6, 2014

vMSM N_1 = Dark Matter

• Assume lightest singlet fermion N_1 has a very weak mixing with the other leptons

- Mass $M_1 \sim \mathcal{O}(keV)$ and very small coupling
 - → Sufficiently stable to act as Dark Matter candidate
 - → Give the right abundance
 - → Decouples from the primordial plasma very early
- Produced relativistically out of equilibrium in the radiation dominant epoque → erase density fluctuations below free-streaming horizon → sterile neutrinos are redshifted to be non-relativistic before end of radiation dominance (Warm Dark Matter → CDM)
 - → Decaying Dark Matter

Seminar at University of Sofia, Bulgaria, October 6, 2014

Dark Matter Constraint and Search

- Tremaine-Gunn bound: average phase-space density for fermionic DM particles cannot exceed density given by Pauli exclusion principle
 - → For smallest dark matter dominated objects such as dwarf spheroidal galaxies of the Milky Way
- 2. X-ray spectrometers to detect mono-line from radiative decay
 - Large field-of-view ~ ~ size of dwarf spheroidal galaxies ~ 1°
 - Resolution of $\frac{\Delta E}{E} \sim 10^{-3} 10^{-4}$ coming from width of decay line due to Doppler broadening
 - → Proposed/planned X-ray missions: Astro-H, LOFT, Athena+, Origin/Xenia
- 3. Lyman- α forest
 - Super-light sterile neutrino creates cut-off in the power spectrum of matter density fluctuations due to subhorizon free-streaming $d_{FS} \sim 1 \text{ Gpc } m_{eV}^{-1}$
 - Fitted from Fourier analysis of spectra from distant quasars propagating through fluctuations in the neutral hydrogen density at redshifts 2-5

Ben Moore

Intriguing hints from galaxy spectrum?

Two recent publications:

- → arXiv:1402.2301 : Detection of an unidentified emission line in the stacked XMM-Newton X-ray spectra of Galaxy Clusters at $E_{\gamma} \sim (3.55 - 3.57) \pm 0.03 keV$
- → arXiv:1402.4119 : An unidentified line in the X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster at $E_{\gamma} \sim 3.5 \ keV$

Confirmation by Astro-H with better energy resolution required

Seminar at University of Sofia, Bulgaria, October 6, 2014

18

ER

N_2 and N_3 in vMSM

• N_1 as DM ($M_{N_1} \ll M_{N_2} \approx M_{N_3}$) gives no contribution to active neutrino masses

- ➔ Neglect for the rest
- → Reduces number of effective parameters for Lagrangian with $N_{2,3}$
 - 18 parameters → 11 new parameters with 3 CP violating phases
 - → Two mixing angles related to active neutrinos and mass difference measured in low-energy neutrino experiment

• Generation of BAU with degenerate N_2 and N_3 (Akhmedov, Rubakov, Smirnov; Asaka, Shaposhnikov)

- 1. Leptogenesis from coherent resonant oscillations with interference between CP violating amplitudes
 - → Two fermion singlets should be quasi-degenerate
- 2. Out of equilibrium ($\Gamma_{N_{2,3}}$ < Hubble rate of expansion) at the E.W. scale above sphaleron freeze-out
- 3. Lepton number of active left-handed neutrinos transferred to baryon number by sphaleron processes
 - $\mathbb{L}_{\ell} \frac{\mathbb{B}}{3}$ remain conserved while \mathbb{L}_{ℓ} and \mathbb{B} are violated individually

R. Jacobsson

Thermal History in ν MSM

Seminar at University of Sofia, Bulgaria, October 6, 2014

N_2 and N_3 Constraints in vMSM

- 1. See-saw: Lower limit on mixing with active neutrinos to produce oscillations and masses
- 2. BAU: Upper limit on mixing to guarantee out-of-equilibrium oscillations ($\Gamma_{N_{2,3}} < H$)
- BBN: Decays of N₂ and N₃ must respect current abundances of light nuclei
 → Limit on lifetime τ_{N_{2,3}} < 0.1s (T > 3 MeV)
- 4. Experimental: No observation so far...

-> Constraints 1-3 now indicate that previous searches were largely outside interesting parameter space

N_2 and N_3 Constraints in vMSM

- 1. See-saw: Lower limit on mixing with active neutrinos to produce oscillations and masses
- 2. BAU: Upper limit on mixing to guarantee out-of-equilibrium oscillations ($\Gamma_{N_{2,3}} < H$)
- BBN: Decays of N₂ and N₃ must respect current abundances of light nuclei
 → Limit on lifetime τ_{N_{2,3}} < 0.1s (T > 3 MeV)
- 4. Experimental: No observation so far...

→ Constraints 1-3 now indicate that previous searches were largely outside interesting parameter space

• Large fraction of interesting parameter space can be explored in accelerator based search

- $m_{\pi} < M_N < 2++ GeV$
- M_N > 2 GeV is not reachable at any operating facility

Seminar at University of Sofia, Bulgaria, October 6, 2014

Constraints in Variants of vMSM

- 1. vMSM: HNLs are required to explain neutrino masses, BAU, and DM
 - *U*² is the most constrained
- 2. HNLs are required to explain neutrino masses and BAU
 - N_1 , N_2 and N_3 are available to produce neutrino oscillations/masses and BAU
- 3. HNLs are required to explain neutrino masses
 - Only experimental constraints remain
- 4. HNLs are required to explain Dark Matter
- 5. HNLs are helpful in cosmology and astrophysics
 - E.g. HNL may influence primordial abundance of light elements
 - E.g. HNL with masses below 250 MeV can facilitate the explosions of the supernovae
- HNLs are not required to explain anything just so
 - Contributions of the HNL to the rare lepton number violating processes $\mu \rightarrow e, \mu \rightarrow eee$

Seminar at University of Sofia, Bulgaria, October 6, 2014

$N_{2,3}$ Production

- Production in mixing with active neutrino from leptonic/semi-leptonic weak decays of charm mesons
 - Total production depend on $\mathcal{U}^2 = \sum_{\substack{I=1,2\\\ell=e,\mu,\tau}} |\mathcal{U}_{\ell I}|^2$
 - Relation between \mathcal{U}_e^2 , \mathcal{U}_μ^2 and \mathcal{U}_τ^2 depends on exact flavour mixing
 - ➔ For the sake of determining a search strategy, assume scenario with a predominant coupling to the muon flavour (arXiv:0605047)

• Production mechanism probes
$$\mathcal{U}_{\mu}^{2} = \sum_{I=2,3} \frac{v^{2}|Y_{\mu I}|}{m_{I}^{R^{2}}}$$

→ Br(
$$D \rightarrow NX$$
) ~ $10^{-8} - 10^{-12}$

$N_{2,3}$ Decay

• Very weak HNL-active neutrino mixing $\rightarrow N_{2,3}$ much longer lived than SM particles

→ Typical lifetimes > 10 µs for $M_{N_{2,3}} \sim 1 \text{ GeV} \rightarrow \text{Decay distance } \mathcal{O}(km)$

• Decay modes:

- $N \rightarrow \mu e \nu, \pi^0 \nu, \pi e, \mu \mu \nu, \pi \mu, K e, K \mu, \eta \nu, \eta' \nu, \rho \nu, \rho e, \rho \mu, \dots$
- Branching ratios depend on flavour mixing (again)
- Typical:

Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^-/e^- + \rho^+$	0.5 - 20 %
$N_{2,3} \rightarrow \nu + \mu + e$	1 - 10 %

• Probability that $N_{2,3}$ decays in the fiducial volume $\propto U_{\mu}^2$

Experimental Requirements/Challenges

Proposal: fixed-target (beam dump like) experiment at the SPS

- 1. E.g. sensitivity to HNL $\propto U^4 \rightarrow$ Number of protons on target (p.o.t.)
 - → SPS: $4-5x10^{13}$ / 6-7s @ 400 GeV = 500 kW → $2x10^{20}$ in 5 years (similar to CNGS)
- 2. Preference for relatively slow beam extraction O(ms 1s) to reduce detector occupancy
 - ➔ Reduce combinatorial background
- 3. As uniform extraction as possible for target and combinatorial background/occupancy
- 4. Heavy material target to stop π , K before decay to reduce flux of active neutrinos
 - → Blow up beam to dilute beam energy on target
- 5. Long muon shield to range out flux of muons
- 6. Away from tunnel walls to reduce neutrino interactions in proximity of detector
- 7. Vacuum in detector volume to reduce neutrino interactions in detector
- 8. Detector acceptance compromise between lifetime and production angles
 - ...and length of shield to filter out muon flux
- Incompatible with conventional neutrino facility

Seminar at University of Sofia, Bulgaria, October 6, 2014

→ Multi-dimensional optimization: Beam energy is compromise between σ_{charm} , beam intensity, background conditions, acceptance, detector resolution

Seminar at University of Sofia, Bulgaria, October 6, 2014

R. Jacobsson

Schematic Principle of Experimental Setup

- Residual backgrounds:
 - 1. <u>Neutrinos scattering</u> (e.g. $v_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi v$) \rightarrow Detector under vacuum, accompanying charged particles (timing), topological
 - 2. <u>Muon inelastic scattering</u> → Accompanying charged particles (timing), topological
 - 3. Muon combinatorial (e.g. $\mu\mu$ with μ mis-ID) \rightarrow Tagging, timing and topological

Generic setup, not to scale!

Schematic Principle of Experimental Setup

- Residual backgrounds:
 - 1. <u>Neutrinos scattering</u> (e.g. $v_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi v$) \rightarrow Detector under vacuum, accompanying charged particles (timing), topological
 - 2. <u>Muon inelastic scattering</u> → Accompanying charged particles (timing), topological
 - 3. Muon combinatorial (e.g. $\mu\mu$ with μ mis-ID) \rightarrow Tagging, timing and topological

Generic setup, not to scale!

CERN Accelerator Complex

Seminar at University of Sofia, Bulgaria, October 6, 2014

Seminar at University of Sofia, Bulgaria, October 6, 2014

CERN

CERN Task force

Initiated by CERN Management after SPSC encouragement in January

Detailed investigation

- Physics motivation and requirements
- Experimental Area
- SPS configuration and beam time
- SPS beam extraction and delivery
- Target station
- Civil engineering
- Radioprotection
- → Aimed at overall feasibility, identifying options/issues, resource estimate
- → Document completed with 80 pages on July 2
- → Detailed cost, manpower and schedule
- → Compatible with commissioning runs in 2022, data taking 2023

X		REFERENCE	
\geq	EN-	DH-2014	4-007
n 211 Geneva 23 zerland Engine	ering Department		
			Date : 2014-07-
	Dement		
	Report		
A new Expe	riment to Search	n for H	lidden
•	Particles (SHIP)		
at	the SPS North A	rea	
		-	
Prelimin	ary Project and Cost I	stimat	e
Prelimin	ary Project and Cost I	stimat	e
Prelimin The scope of the recentl includes a general Sear	ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w	eavy Neutra	e al Leptons, EOI- aspects of neu
Prelimin The scope of the recentl includes a general Sear physics. This report des	ary Project and Cost I y proposed experiment Search for F ch for HIdden Particles (SHIP) as w cribes the implications of such an ex	Estimat leavy Neutra ell as some periment for	e al Leptons, EOI- aspects of neur r CERN.
Prelimin The scope of the recentl includes a general Sear physics. This report desc	ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex	Estimat leavy Neutra ell as some periment fo	e al Leptons, EOI- aspects of neu r CERN.
Prelimin The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY:	y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex	Estimat leavy Neutra ell as some periment for	e al Leptons, EOI- aspects of neu r CERN.
Prelimin The scope of the recentl includes a general Sean physics. This report desc pocument PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon,	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval,	leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, anez, L.Miralles,
Prelimin The scope of the recentl includes a general Sean physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin,	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth,	leavy Neutra ell as some periment for F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, anez, L.Miralles, ban, R.Trant
Prelimin The scope of the recentl includes a general Sean physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, Desceler J. Day U.Wischer	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Misziaco,	Estimat leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, anez, L.Miralles, ban, R.Trant
Prelimin The scope of the recentl includes a general Sean physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex- DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, I. Scibile.	Estimat leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, anez, L.Miralles, ban, R.Trant
Prelimin The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex- DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Estimat leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant
Prelimin The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex- DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Estimat leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant
Prelimin The scope of the recentl includes a general Sear physics. This report desc DOCUMENT PREPARED BY: G.Arduini, M.Calviani, K.Cornelis, L.Gatignon, B.Goddard, A.Golutvin, R.Jacobsson, J. Osborne, S.Roesler, T.Ruf, H.Vincke, H.Vincke	Ary Project and Cost I y proposed experiment Search for H ch for HIdden Particles (SHIP) as w cribes the implications of such an ex- DOCUMENT CHECKED BY: S.Baird, O.Brüning, J-P.Burnet, E.Cennini, P.Chiggiato, F.Duval, D.Forkel-Wirth, R.Jones, M.Lamont, R.Losito, D.Missiaen, M.Nonis, L.Scibile, D.Tommasini,	Estimat leavy Neutra ell as some periment for DOCUME F.Boro M.J.Jime R.Sal	e al Leptons, EOI- aspects of neu r CERN. NT APPROVED BY: dry, P.Collier, enez, L.Miralles, ban, R.Trant

Detector Concept

- Reconstruction and particle identification of final states with e, μ , π^{\pm} , γ
 - Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter in large hall
 - Long vacuum vessel, 5 m diameter, 50 m length
 - 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Detector Concept

fraction (%)

0.008

КIJ

 \bigcirc

- Saturates for a given $N_{2,3}$ lifetime as a function of the detector length
- The use of two magnetic spectrometers increases the acceptance by 70%

Ex. Background Suppression

- 5^{-2} ×10⁴ neutrino interactions per 2×10²⁰ p.o.t. in the decay volume at atmospheric pressure
 - ➔ Becomes negligible at 0.01 mbar
- Neutrino (muon) interactions in the final part of the muon shield
 - $\nu_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi \nu$
 - Yields CC(NC) rate of ~6(2)×10⁵ / λ_{inter} / 2×10²⁰ p.o.t.
 - ~10% of neutrino interactions produce Λ or K^0 in acceptance
 - Majority of decays occur in the first 5 m of the decay volume
 - → Requiring μ -identification for one of the two decay products: 150 two-prong vertices in 2×10²⁰ p.o.t.
 - For 0.5 Tm field integral σ_{mass} ~ 40 MeV for p < 20 GeV

→ E.g. background reduction by impact parameter

- The IP cut will also be used to reject backgrounds induced by neutrino interactions in the material surrounding the detector, cosmics etc
- Similar for muon inelastic interactions in the vicinity of the detector

Seminar at University of Sofia, Bulgaria, October 6, 2014

Expected Event Yield $N_{2,3} \rightarrow \mu \pi$

- Integral mixing angle $\mathcal{U}^2 = \mathcal{U}_e^2 + \mathcal{U}_\mu^2 + \mathcal{U}_\tau^2$
- Estimate of the sensitivity is obtained by considering different scenarios for the hierarchy of flavour coupling (arXiv:0605047)
 - Conservative: Consider only the decay $N_{2,3} \rightarrow \mu \pi$ with production mechanism $D \rightarrow \mu N_{2,3} X$, which probes \mathcal{U}^4_{μ}
- Expected number of signal events

 $\overline{N_{signal}} = n_{pot} \times 2\chi_{cc} \times Br(\mathcal{U}^2_{\mu}) \times \varepsilon_{det}(\mathcal{U}^2_{\mu})$

 $\frac{n_{pot} = 2 \times 10^{20}}{\chi_{cc}} = 0.45 \times 10^{-3}$

- $Br(\mathcal{U}^2_{\mu}) = Br(D \to \mu N_{2,3}X) \times Br(N_{2,3} \to \mu \pi),$
 - $Br(N_{2,3} \rightarrow \mu \pi)$ is assumed to be 20%
 - $Br(D \to NX) \sim 10^{-8} 10^{-12}$
- ε_{det}(U²_μ) is the probability that N_{2,3} decays in the fiducial volume, and μ and π are reconstructed
 → Detection efficiency entirely dominated by the geometrical acceptance (8 × 10⁻⁵ for τ_N = 1.8 × 10⁻⁵s)

Ex. Expected Sensitivity to $N_{2,3} \rightarrow \mu \pi$

Sensitivity based on current SPS with 2x10²⁰ p.o.t in ~5 years of CNGS-like operation

- Ex. $U_{\mu}^2 = 10^{-7}$ (corresponding to strongest current experimental limit for $M_{N_{2,3}} = 1 \text{ GeV}$) ($\tau_N = 18 \, \mu s$)
- → ~12k fully reconstructed $N_{2,3} \rightarrow \mu\pi$ events are expected for $M_{N_{2,3}} = 1 \text{ GeV}$
- → ~120 events for cosmologically favoured region: $U_{\mu}^2 = 10^{-8}$ and $\tau_N = 180 \ \mu s$

Seminar at University of Sofia, Bulgaria, October 6, 2014

Sensitivity to $N_{2,3}$ - other experiments

- \rightarrow Colliders out of luck with low mass / long lifetimes
- LHC (\sqrt{s} = 14 TeV): with 1 ab⁻¹, i.e. 3-4 years: ~ 2x10¹⁶ in 4 π
- SPS@400 ($\sqrt{s} = 27 \text{ GeV}$) with 2x10²⁰ pot, i.e. ~5 years: ~ 2x10¹⁷

Summary of past Searches for N_I

Future

- Towards closing allowed region
 - W → {N at LHC: extremely large BG, difficult triggering/analysis.
 - $Z \rightarrow N$ at e⁺e⁻ collider [M. Bicer et al. 2013]: clean signature, low BG

• Expecting $\mathcal{O}(3500) v_{\tau}$ interactions in 6 tons of emulsion target

• Tau neutrino and anti-neutrino physics

Charm physics with neutrinos and anti-neutrinos

- → v_{μ} induced charm production: 11 000 events
- → $\overline{\nu_{\mu}}$ induced charm productoon: 3500 events
- Electron neutrino studies (high energy cross-section and v_e induced charm production ~ 2 x v_{μ} induced)

→ Normalization for hidden particle search!

- → Negligible loss of acceptance for Hidden Sector detector
- → Hidden Particle detector function as forward spectrometer for v_{τ} physics program
- → Use of calorimeter/muon detector allow tagging neutrino NC/CC interactions → normalization

R. Jacobsson

_____41

History and Current Status

- Oct 2013: submitted our EOI: CERN-SPSC-2013-024 ; arXiv:1310.1762 ; SPSC-EOI-010
 - → EOI stimulated a lot of interest
- January 2014: EOI discussed at SPSC
 - Encouraged to produce "an extended proposal with further developed physics goals, a more detailed technical design and a stronger collaboration."
- January 2014: Meeting with CERN Research Director S. Bertolucci
 - → Proposed a task force to evaluate feasibility and required resources at CERN within ~3months
 - → Supportive to the formation of a Collaboration and agreed to CERN signing
- Work towards Technical Proposal in full swing
 - Extension of physics program
 - Signal background studies and optimization
 - Detector specification, simulation and even some detector R&D
 - Optimization of Experimental Facility beam line, target, and muon filter, RP, overall layout
- 1st SHiP Workshop in Zurich in June with a 100 experimentalists and theorists
 - 41 institutes from 14 countries expressed interest to contribute to the Technical Proposal
- 2nd SHiP Workshop/Collaboration meeting at CERN September 24-26
 - Revise progress in Working Groups
 - Extend physics of a general purpose facility: Tau neutrino, LFV and direct Dark Matter search

Schedule and Technical Proposal

Aim full force at submitting TP at beginning April 2015

• Design of facility must start next summer (CE, beam, target, infra)

Seminar at University of Sofia, Bulgaria, October 6, 2014

Conclusions

- Proposed general purpose experiment for Hidden Sector exploration in largely unexplored domain
 Increased interested for Hidden Sector after LHC Run 1
 - A very significant physics reach beyond past and current experiments in the cosmologically interesting region
- → Extension to general purpose "Flavour Facility"
 - Unique opportunity for v_{τ} physics
 - Lepton Flavour Violation ($\tau \rightarrow 3\mu$)
 - Also direct search for Dark Matter being looked into
- Further extension of complete physics program still ongoing
 - Very welcome to suggest searching for your favourite particle!
- The proposed experiment perfectly complements the searches for NP at the LHC
- Studies of the implementation of the experimental facility and resources in full swing as initiated by CERN management
 - Facility and physics case based on the current injector complex and SPS
 - 2x10²⁰ in 5 nominal years by inheriting CNGS share of the SPS beam time from 2023
- Intense work for Technical Proposal : join!