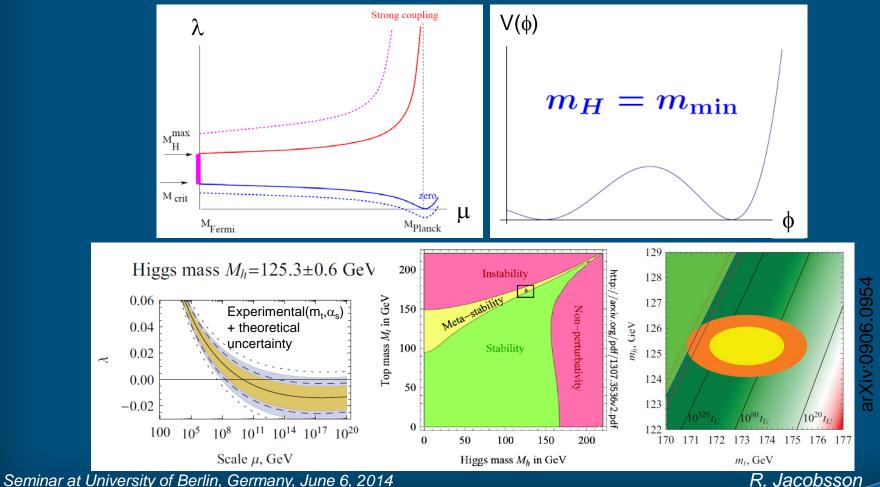


An Experiment to Search for Hidden Particles at the SPS

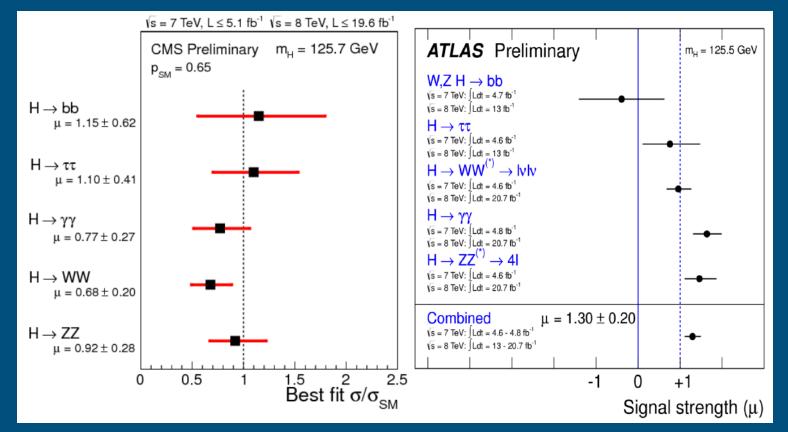
Richard Jacobsson

on behalf of the SHIP Collaboration


→ Standard Model success: Higgs!

Seminar at University of Berlin, Germany, June 6, 2014

SM Validity


- Requirement that the E.W. vacuum be the minimum of the potential up to a scale Λ , implies that $\lambda(\mu) > 0$ for any $\mu < \Lambda$.
- $M_H = 125.5 \pm 0.2_{stat-0.6 syst}^{+0.5} GeV$ (ATLAS) / $M_H = 125.7 \pm 0.3_{stat} \pm 0.3_{syst} GeV$ (CMS)
 - $m_H < 175 \text{ GeV}$: Landau pole in the self-interaction is above the quantum gravity scale $M_{Pl} \sim 10^{19} \text{ GeV}$
 - $m_H > 111 \text{ GeV}$: Electroweak vacuum is sufficiently stable with a lifetime >> τ_{Universe}

Higgs Discovery

It looks very much like THE Higgs boson:

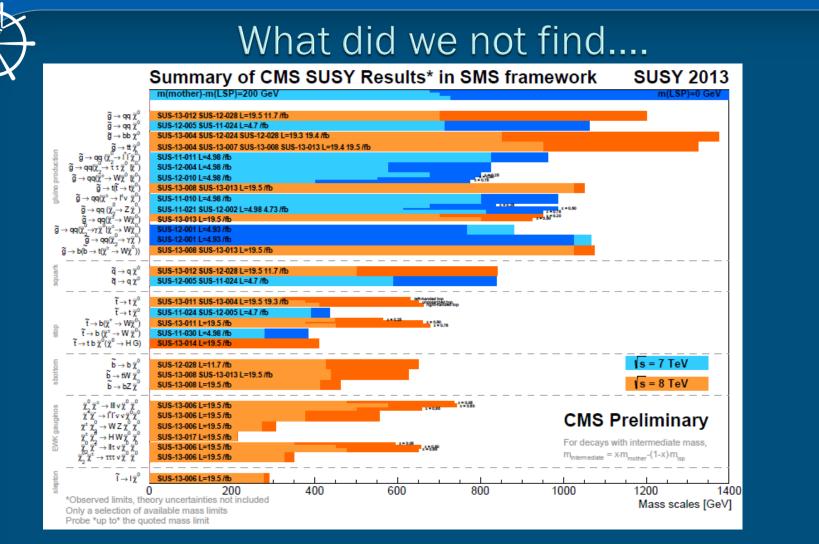
• To be done

- Measure more precisely fermion couplings
- Measure triple and quartic gauge couplings to reconstruct vacuum potential

Physics Situation after LHC Run 1

- With a mass of the Higgs boson of 125 126 GeV, the Standard Model may be a selfconsistent weakly coupled effective field theory up to very high scales (possibly up to the Planck scale) without adding new particles
 - → No need for new particles up to Planck scale!?

Experimental evidence for New Physics


- 1. Neutrino oscillations: tiny masses and flavour mixing
 - \rightarrow Requires new degrees of freedom in comparison to SM
- 2. Baryon asymmetry of the Universe
 - → Measurements from BBN and CMB $\eta = \left\langle \frac{n_B}{n_V} \right\rangle_{T=2V} \sim \left\langle \frac{n_B n_{\overline{B}}}{n_B + n_{\overline{B}}} \right\rangle_{T=1.64V} \sim 6 \times 10^{-10}$
 - → Current measured CP violation in quark sector → $\eta \sim 10^{-20}$!!
- 3. Dark Matter from indirect gravitational observations
 - \rightarrow Non-baryonic, neutral and stable or long-lived
- 4. Dark Energy

Theoretical "evidence" for New Physics

- 1. Hierarchy problem and stability of Higgs mass
- 2. SM flavour structure
- 3. Strong CP problem
- 4. Gravity
- 5.

→ While we had unitarity bounds for the Higgs, no such indication on the next scale....

Seminar at University of Berlin, Germany, June 6, 2014

Very intriguing situation! Multitude of "solutions" to these questions

→ Search for Beyond Standard Model physics at the LHC, FHC (Energy Frontier):

- Continued direct searches for new particles
- Higgs and top (EW) precision physics
- Flavour precision physics

Seminar at University of Berlin, Germany, June 6, 2014

ERN

What did we not find...

ATLAS Exotics Searches* - 95% CL Exclusion

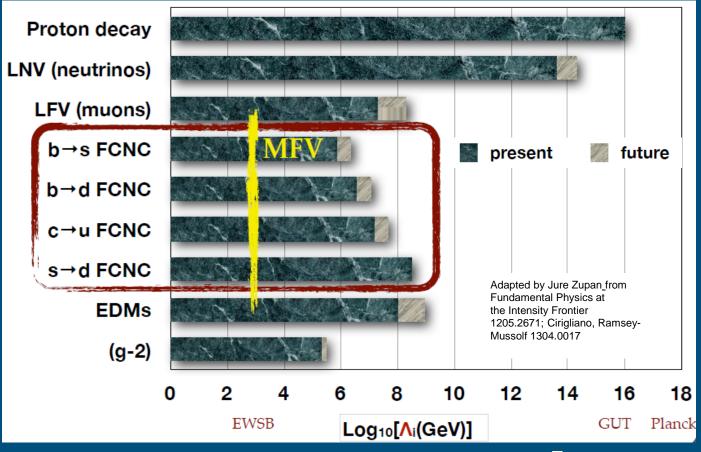
Status: April 2014

Model ℓ,γ		<i>ℓ</i> ,γ	ℓ,γ Jets E ^{miss} ∫⊥dt[fb			5	2ut = (1.0 - 20.0) is	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell\ell/\gamma\gamma$ ADD QBH $\rightarrow \ell q$ ADD BH high Σp_T RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow \ell\ell$ RS1 $G_{KK} \rightarrow U\ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell\nu\ell\nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ Bulk RS $g_{KK} \rightarrow t\bar{t}$ S^1/Z_2 ED UED	$-$ $2\gamma \text{ or } 2e, \mu$ $1 e, \mu$ $2 \mu \text{ (SS)}$ $\geq 1 e, \mu$ $2 e, \mu$ $2 \text{ or } 4 e, \mu$ $2 e, \mu$ $-$	1-2 j - 1 j - 2 j or - 4 b ≥ 1 b, ≥ 1J/	Yes Yes 2j Yes 	4.7 4.7 20.3 20.3 20.3 20.3 1.0 4.7 19.5 14.3 5.0	Mp 4.37 TeV Mg 4.37 TeV Mg 4.18 TeV Mg 5.2 TeV Mg 5.2 TeV Mg 5.7 TeV Mgh 6.2 TeV Mgh 6.2 TeV GKK mass 2.47 TeV GKK mass 590-710 GeV GKK mass 590-710 GeV MKK ≈ R ⁻¹ 4.71 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 1.5 \text{ TeV, non-rot BH} \\ n &= 6, M_D = 1.5 \text{ TeV, non-rot BH} \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 0.1 \\ k/\overline{M}_{Pl} &= 1.0 \\ BR &= 0.925 \end{split}$	1210.4491 1211.1150 1311.2006 ATLAS-CONF-2014-016 ATLAS-CONF-2013-017 1203.0718 1208.2880 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2535
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \rightarrow \ell\ell \\ \text{SSM } Z' \rightarrow \tau\tau \\ \text{SSM } W' \rightarrow \ell\nu \\ \text{EGM } W' \rightarrow WZ \rightarrow \ell\nu \ \ell'\ell' \\ \text{LRSM } W'_R \rightarrow t\overline{b} \end{array}$	2 e,μ 2 τ 1 e,μ 3 e,μ 1 e,μ	_ _ _ _ 2 b, 0-1 j	Yes – Yes Yes Yes	4.8 20.3 19.5 20.3 20.3 14.3	Z' mass 2.86 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.84 TeV		ATLAS-CONF-2012-072 ATLAS-CONF-2013-017 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 ATLAS-CONF-2014-015 ATLAS-CONF-2013-050
CI	Cl qqqq Cl qqql Cl uutt	_ 2 e,μ 2 e,μ (SS)			4.8 5.0 14.3	Λ 3.3 TeV	$\eta = +1$.9 TeV $\eta_{LL} = -1$ C = 1	1210.1718 1211.1150 ATLAS-CONF-2013-051
MQ	EFT D5 operator EFT D9 operator	_	1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi) < 80 \text{ GeV}$ at 90% CL for $m(\chi) < 100 \text{ GeV}$	ATLAS-CONF-2012-147 1309.4017
Γ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e,μ 2 e,μ	$\geq 2 \text{ b}, \geq 4$ $\geq 1 \text{ b}, \geq 3$ $\geq 2 \text{ b}$ $\geq 1 \text{ b}, \geq 1$	j Yes –	14.3 14.3 14.3 14.3	T mass 790 GeV T mass 670 GeV B mass 725 GeV B mass 720 GeV	T in (T,B) doublet isospin singlet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2013-056 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 –	– – j Yes –	20.3 13.0 4.7 13.0	q* mass 3.5 TeV q* mass 3.84 TeV b* mass 870 GeV I* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 ATLAS-CONF-2012-148 1301.1583 1308.1364
Other	LRSM Majorana v Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2 e,μ 2 e,μ 2 e,μ (SS) - -	2 j - - -		2.1 5.8 4.7 4.4 2.0	Nº mass 1.5 TeV N≢ mass 245 GeV H±± mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV	$\begin{split} m(W_R) &= 2 \text{ TeV, no mixing} \\ V_e &= 0.055, V_{\mu} &= 0.063, V_{\tau} &= 0 \\ \text{DY production, BR}(H^{\pm\pm} \rightarrow \ell\ell) &= 1 \\ \text{DY production, } q &= 4e \\ \text{DY production, } g &= 1g_D \end{split}$	1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
	$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 10 Mass scale [TeV]							

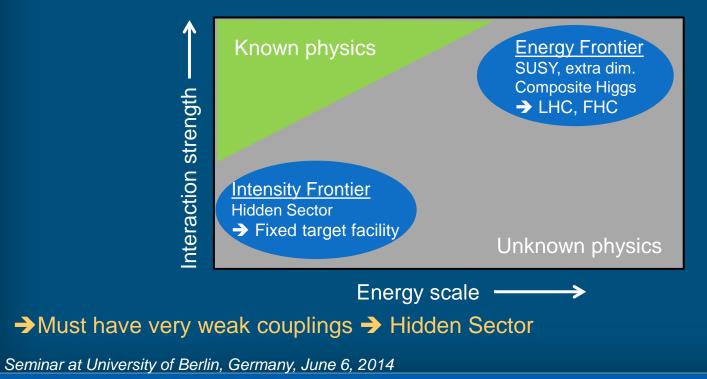
*Only a selection of the available mass limits on new states or phenomena is shown.

Seminar at University of Berlin, Germany, June 6, 2014

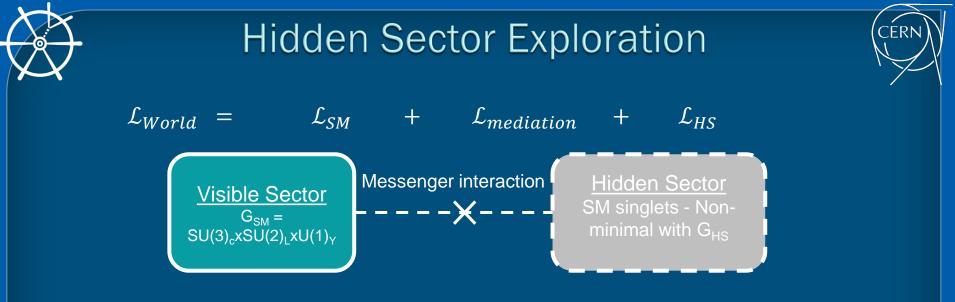
 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

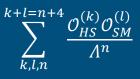

ATLAS Preliminary

Precision Flavour Physics


• Most stringent bounds on the scale of New Physics from $B\overline{B}$ mixing...

What if...?


What about solutions to (some) these questions below Fermi scale?



R. Jacobsson

CERN

- New light hidden particles are singlet under the SM gauge group
- Composite operators (hoping there is not just gravity...) $\mathcal{L}_{mediation} =$

• Lowest dimension SM operator makes up "portals" to the Hidden Sector

"Direct detection" through both portals in and out:

Seminar at University of Berlin, Germany, June 6, 2014

SM Portals to Hidden Sector

Standard Model portals:

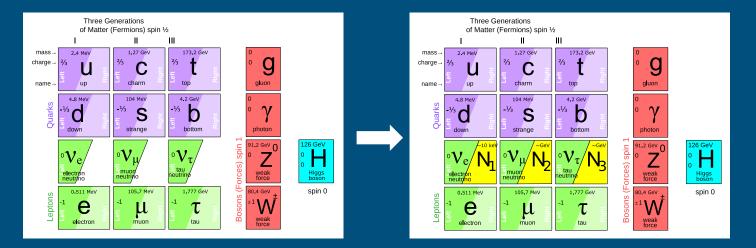
- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V : $\frac{1}{2} \varepsilon F_{\mu\nu}^{SM} F_{HS}^{\mu\nu}$
 - → Interaction with 'mirror world' constituting dark matter

• D = 2: Higgs portal

• Mixing with dark scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$

➔ Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

- D = 5/2: Neutrino portal
 - Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^+\overline{N}L$
 - → Neutrino oscillation, baryon asymmetry, dark matter
- D = 4: Axion portal
 - Mixing with axion like particles, pseudo-scalars, axial vectors : $\frac{a}{E}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\sigma_{\mu}a}{E}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc
 - → Solve strong CP problem
- And higher dimensional operator portals and supersymmetric portals (light neutralino, light sgoldstino,...)


Common features of 'Portals'

CERN

- Cosmologically interesting and accessible $m_{HS} \sim O(MeV GeV)$
 - → Production through meson decays (π , K, D, B)
 - → Decay to l^+l^- , $\pi^+\pi^-$, $l\pi$, $l\rho$, $\gamma\gamma$, etc
- Production and decay rates are very suppressed relative to SM.
 - Production branching ratios $O(10^{-10})$
 - Long-lived objects
 - Travel unperturbed through *ordinary* matter
- → Fixed-target experiment
 - → Large number of protons on target and large decay volume!
 - → Complementary physics program to searches for new physics by LHC!
 - → For development of experimental facility and detector concept, and sensitivity studies neutrino portal and the vector portal

• Introduce three neutral fermion singlets – right-handed Majorana leptons N_I with Majorana mass $m_I^R \equiv$ "Heavy Neutral Leptons (HNL)"

- Make the leptonic sector similar to the quark sector
- No electric, strong or weak charges → "sterile"

Minkowski 1977 Yanagida 1979 Gell-Mann, Ramond, Slansky 1979 Glashow 1979

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{\substack{I=1,2,3;\\\ell=1,2,3(e,\mu,\tau)}} i\overline{N}_I \partial_\mu \gamma^\mu N_I - Y_{I\ell} H^{\dagger} \overline{N}_I L_{\ell} - m_I^R \overline{N}_I^c N_I + h.c$$

where L_{ℓ} are the lepton doublets, Φ is the Higgs doublet, and $Y_{I\ell}$ are the corresponding new Yukawa couplings

● Discovery of Higgs vital for the see-saw model! → Responsible for the Yukawa couplings!

Type I See-saw

 $\langle \Phi \rangle$

 \mathcal{V}_i

Y_{Iℓ}H[†]N̄_IL_ℓ lepton flavour violating term results in mixing between N_I and SM active neutrinos when the Higgs SSB develops the < VEV > = v ~ 246 GeV
 → Oscillations in the mass-basis and CP violation

- Type I See-saw with $m^R >> m_D (= Y_{I\ell}v) \rightarrow$ superposition of chiral states give
 - Active neutrino mass in mass basis $\widetilde{m}_1 \sim \frac{m_D^2}{m^R} \sim m_v$
 - → Heavy singlet fermion mass in mass basis $\widetilde{m}_2 \sim m^R \left(1 + \frac{m_D^2}{m^R^2}\right) \sim m^R \sim M_N$

• Four "popular" *N* mass ranges:

arXiv:1204.5379

N

N

 v_i

Strong coupling 0.1 neutrino masses are too large		N mass	v masses	eV v anoma– lies	BAU	DM	M _H stability	direct search	experi– ment
no neutrino masses are too large	GUT see-saw	^{10–16} 10 GeV	YES	NO	YES	NO	NO	NO	_
neutrino masses are too small	EWSB	2-3 10 GeV	YES	NO	YES	NO	YES	YES	LHC
$10^{-17} \begin{array}{c} 10^{-13} \\ 10^{-13} \\ 10^{-7} \\ 0.1 \\ 10^{5} \\ 10^{11} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{17} \\ 10^{11} \\ 10^{17} \\ 10^{17} \\ 10^{11} \\ 10^{17} \\ 10^$	ν ΜSΜ	keV – GeV	YES	NO	YES	YES	YES	YES	a'la CHARM
LSND VMSM LHC GUT see-sav Majorana mass, GeV	v v scale	eV	YES	YES	NO	NO	YES	YES	a'la LSND

Seminar at University of Berlin, Germany, June 6, 2014

• Assumption that N_I are $\mathcal{O}(m_q/m_{l^{\pm}})$

→ Consequence: Yukuawa couplings are very small

•
$$Y_{I\ell} = \mathcal{O}\left(\frac{\sqrt{m_{atm}m_I^R}}{v}\right) \sim 10^{-8} \ (m^R = 1 \ GeV, m_v = 0.05 \ eV)$$

•
$$U^2 \sim 10^{-11}$$

→ Experimental challenge → Intensity Frontier

Role of N_1 with a mass of $\mathcal{O}(\text{keV})$ \rightarrow Dark Matter

Role of N_2 and N_3 with a mass of $\mathcal{O}(m_q/m_{l^{\pm}})$ (100 MeV – GeV): → Neutrino oscillations and mass, and BAU

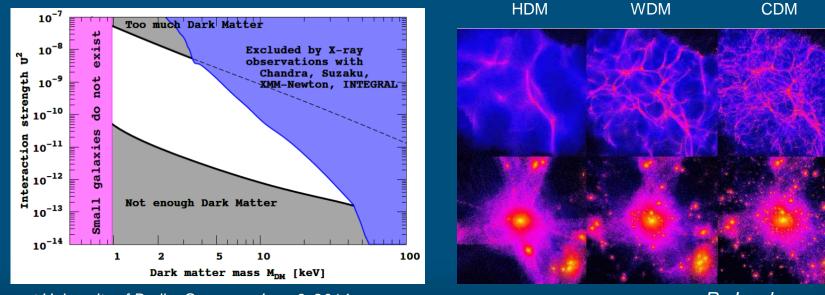
→ No new energy scale!

Seminar at University of Berlin, Germany, June 6, 2014

vMSM N_1 = Dark Matter

• Assume lightest singlet fermion N_1 has a very weak mixing with the other leptons

- Mass $M_1 \sim O(keV)$ and very small coupling
 - → Sufficiently stable to act as Dark Matter candidate
 - → Give the right abundance
 - → Decouples from the primordial plasma very early
- Produced relativistically out of equilibrium in the radiation dominant epoque → erase density fluctuations below free-streaming horizon → sterile neutrinos are redshifted to be non-relativistic before end of radiation dominance (Warm Dark Matter → CDM)
 - → Decaying Dark Matter

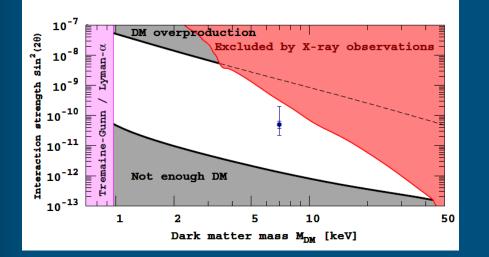


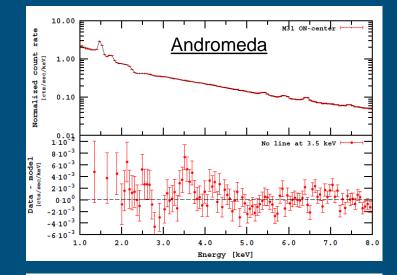
Seminar at University of Berlin, Germany, June 6, 2014

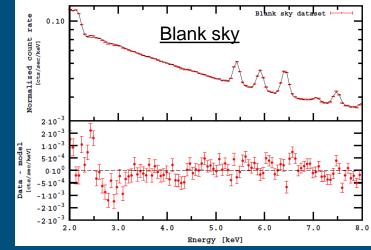
Dark Matter Constraint and Search

- Tremaine-Gunn bound: average phase-space density for fermionic DM particles cannot exceed density given by Pauli exclusion principle
 - → For smallest dark matter dominated objects such as dwarf spheroidal galaxies of the Milky Way
- 2. X-ray spectrometers to detect mono-line from radiative decay
 - Large field-of-view ~ ~ size of dwarf spheroidal galaxies ~ 1°
 - Resolution of $\frac{\Delta E}{E} \sim 10^{-3} 10^{-4}$ coming from width of decay line due to Doppler broadening
 - → Proposed/planned X-ray missions: Astro-H, LOFT, Athena+, Origin/Xenia
- 3. Lyman- α forest
 - Super-light sterile neutrino creates cut-off in the power spectrum of matter density fluctuations due to subhorizon free-streaming $d_{FS} \sim 1 \text{ Gpc } m_{eV}^{-1}$
 - Fitted from Fourier analysis of spectra from distant quasars propagating through fluctuations in the neutral hydrogen density at redshifts 2-5

Seminar at University of Berlin, Germany, June 6, 2014

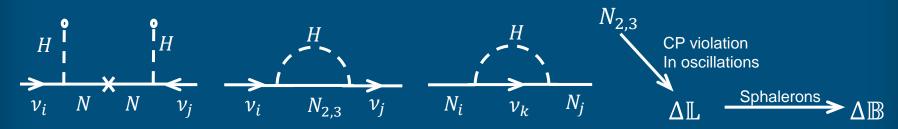

Confirmation by Astro-H with better energy resolution required


Seminar at University of Berlin, Germany, June 6, 2014

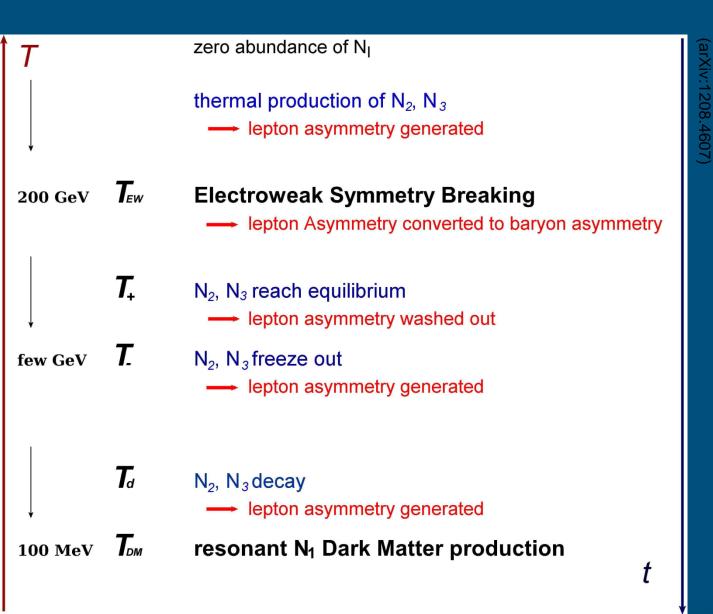

Intriguing hints from galaxy spectrum?

• Two recent publications:

- → arXiv:1402.2301 : Detection of an unidentified emission line in the stacked XMM-Newton X-ray spectra of Galaxy Clusters at $E_{\gamma} \sim (3.55 - 3.57) \pm 0.03 keV$
- → arXiv:1402.4119 : An unidentified line in the X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster at $E_{\gamma} \sim 3.5 \ keV$

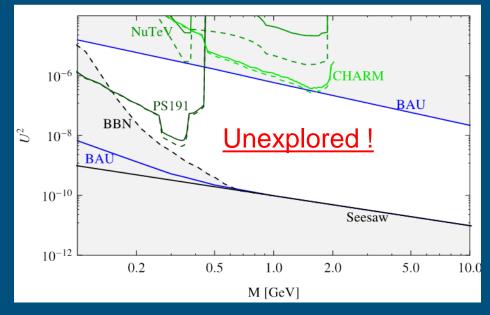


N_2 and N_3 in vMSM



- N_1 as DM ($M_{N_1} \ll M_{N_2} \approx M_{N_3}$) gives no contribution to active neutrino masses
 - ➔ Neglect for the rest
 - → Reduces number of effective parameters for Lagrangian with $N_{2,3}$
 - 18 parameters → 11 new parameters with 3 CP violating phases
 - → Two mixing angles related to active neutrinos and mass difference measured in low-energy neutrino experiment
 - Generation of BAU with degenerate N_2 and N_3 (Akhmedov, Rubakov, Smirnov; Asaka, Shaposhnikov)
 - 1. Leptogenesis from coherent resonant oscillations with interference between CP violating amplitudes
 - → Two fermion singlets should be quasi-degenerate
 - 2. Out of equilibrium ($\Gamma_{N_{2,3}}$ < Hubble rate of expansion) at the E.W. scale above sphaleron freeze-out
 - 3. Lepton number of active left-handed neutrinos transferred to baryon number by sphaleron processes
 - $\mathbb{L}_{\ell} \frac{\mathbb{B}}{3}$ remain conserved while \mathbb{L}_{ℓ} and \mathbb{B} are violated individually

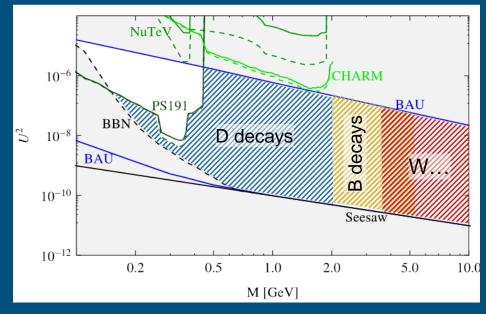
Thermal History in νMSM



Seminar at University of Berlin, Germany, June 6, 2014

N_2 and N_3 Constraints in vMSM

- CERN
- 1. See-saw: Lower limit on mixing with active neutrinos to produce oscillations and masses
- 2. BAU: Upper limit on mixing to guarantee out-of-equilibrium oscillations ($\Gamma_{N_{2,3}} < H$)
- BBN: Decays of N₂ and N₃ must respect current abundances of light nuclei
 → Limit on lifetime τ_{N_{2,3}} < 0.1s (T > 3 MeV)
- 4. Experimental: No observation so far...


→ Constraints 1-3 now indicate that previous searches were largely outside interesting parameter space

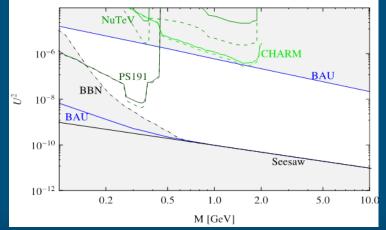
N_2 and N_3 Constraints in vMSM

- 1. See-saw: Lower limit on mixing with active neutrinos to produce oscillations and masses
- 2. BAU: Upper limit on mixing to guarantee out-of-equilibrium oscillations ($\Gamma_{N_{2.3}} < H$)
- BBN: Decays of N₂ and N₃ must respect current abundances of light nuclei
 → Limit on lifetime τ_{N_{2,3}} < 0.1s (T > 3 MeV)
- 4. Experimental: No observation so far...

-> Constraints 1-3 now indicate that previous searches were largely outside interesting parameter space

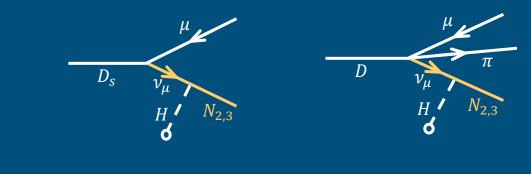
• Large fraction of interesting parameter space can be explored in accelerator based search

- $m_{\pi} < M_N < 2$ GeV
- M_N > 2 GeV is not reachable at any operating facility


Seminar at University of Berlin, Germany, June 6, 2014

Constraints in Variants of vMSM

- 1. vMSM: HNLs are required to explain neutrino masses, BAU, and DM
 - U² is the most constrained
- 2. HNLs are required to explain neutrino masses and BAU
 - N_1 , N_2 and N_3 are available to produce neutrino oscillations/masses and BAU
- 3. HNLs are required to explain neutrino masses
 - Only experimental constraints remain
- 4. HNLs are required to explain Dark Matter
- 5. HNLs are helpful in cosmology and astrophysics
 - E.g. HNL may influence primordial abundance of light elements
 - E.g. HNL with masses below 250 MeV can facilitate the explosions of the supernovae
- HNLs are not required to explain anything just so
 - Contributions of the HNL to the rare lepton number violating processes $\mu \rightarrow e,\, \mu \rightarrow eee$



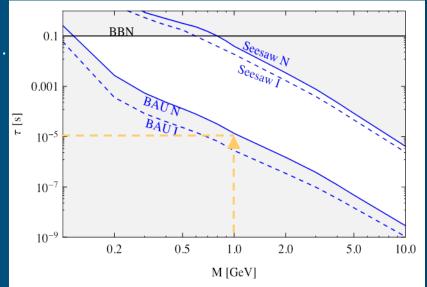
Seminar at University of Berlin, Germany, June 6, 2014

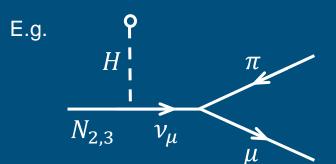
$N_{2,3}$ Production

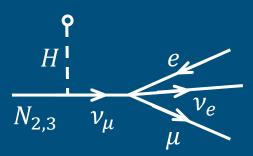
- Production in mixing with active neutrino from leptonic/semi-leptonic weak decays of charm mesons
 - Total production depend on $\mathcal{U}^2 = \sum_{\substack{I=1,2\\\ell=e,\mu,\tau}} |\mathcal{U}_{\ell I}|^2$
 - Relation between \mathcal{U}_e^2 , \mathcal{U}_μ^2 and \mathcal{U}_τ^2 depends on exact flavour mixing
 - ➔ For the sake of determining a search strategy, assume scenario (arXiv:0605047) with a predominant coupling to the muon flavour

• Production mechanism probes
$$\mathcal{U}_{\mu}^{2} = \sum_{I=2,3} \frac{v^{2}|Y_{\mu I}|}{m_{I}^{R^{2}}}$$

 $N_{2,3}$ Decay



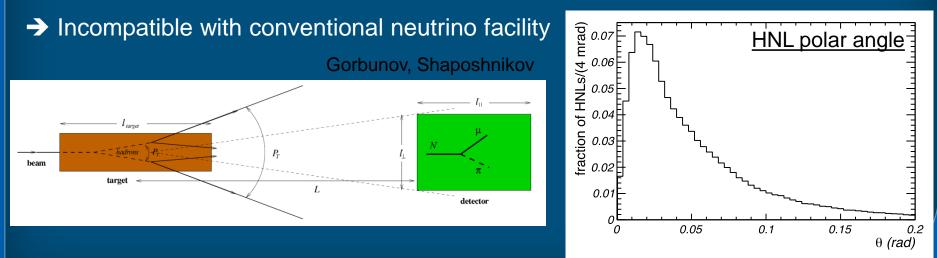

- Very weak HNL-active neutrino mixing $\rightarrow N_{2,3}$ much longer lived than SM particles
 - → Typical lifetimes > 10 µs for $M_{N_{2,3}} \sim 1 \text{ GeV} \rightarrow \text{Decay distance } \mathcal{O}(km)$


• Decay modes:

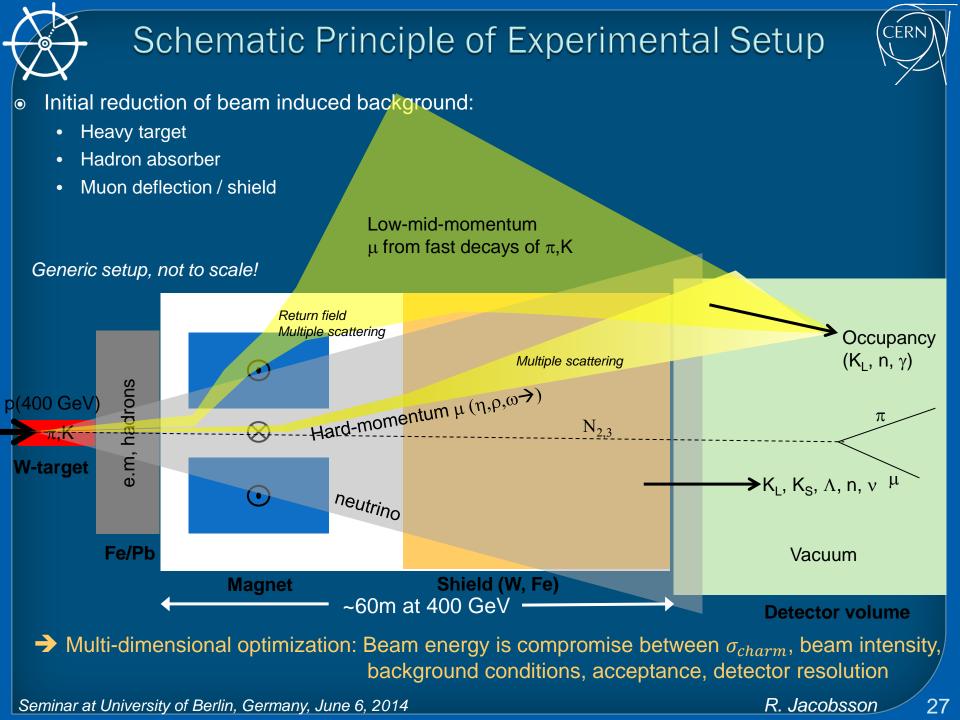
- $N \rightarrow \mu e \nu, \pi^0 \nu, \pi e, \mu \mu \nu, \pi \mu, K e, K \mu, \eta \nu, \eta' \nu, \rho \nu, \rho e, \rho \mu, \dots$
- Branching ratios depend on flavour mixing (again)
- Typical:

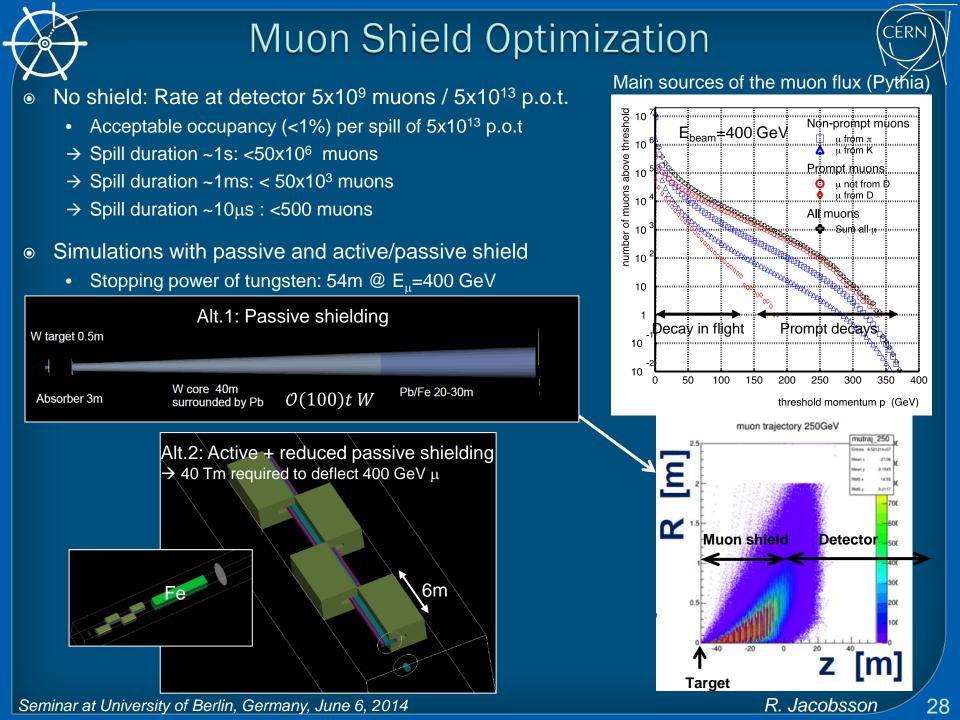
Decay mode	Branching ratio
$N_{2,3} \rightarrow \mu/e + \pi$	0.1 - 50 %
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %
$N_{2,3} \rightarrow v + \mu + e$	1 - 10 %

• Probability that $N_{2,3}$ decays in the fiducial volume $\propto U_{\mu}^2$

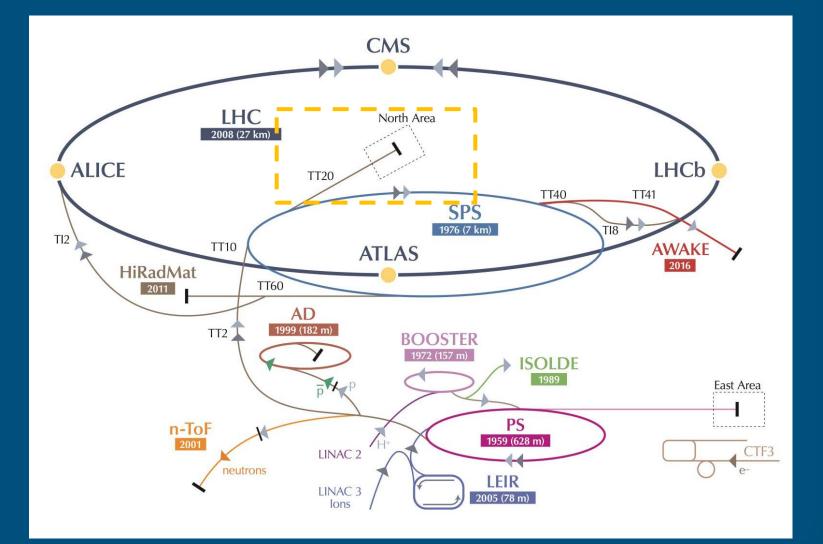

Seminar at University of Berlin, Germany, June 6, 2014

Experimental Requirements/Challenges




Proposal: fixed-target (beam dump like) experiment at the SPS

- 1. Sensitivity $\propto \mathcal{U}^4 \rightarrow$ Number of protons on target (p.o.t.)
 - → SPS: $4-5x10^{13}$ / 6-7s @ 400 GeV = 500 kW → $2x10^{20}$ in 5 years (similar to CNGS)
- 2. Preference for relatively slow beam extraction O(ms 1s) to reduce detector occupancy
- 3. Heavy material target to stop π , K before decay to reduce flux of active neutrinos
 - → Blow up beam to dilute beam energy on target
- 4. Long muon shield to range out flux of muons
- 5. Away from tunnel walls to reduce neutrino interactions in proximity of detector
- 6. Vacuum in detector volume to reduce neutrino interactions in detector
- 7. Detector acceptance compromise between lifetime and $N_{2,3}$ production angle
 - ...and length of shield to filter out muon flux


Seminar at University of Berlin, Germany, June 6, 2014

CERN Accelerator Complex

Seminar at University of Berlin, Germany, June 6, 2014

Prevessin North Area site

810

TARGET HALL ~ 20m wide

Underground Structures (Tunnel/Cavern/Hall) Surface or Partially Underground Structures (Target Hall/SB/Access Build)

Shafts + Tunnel access

Beam Line

Access Bld. ~ 20m wide

Service Bld. ~ 15m wide

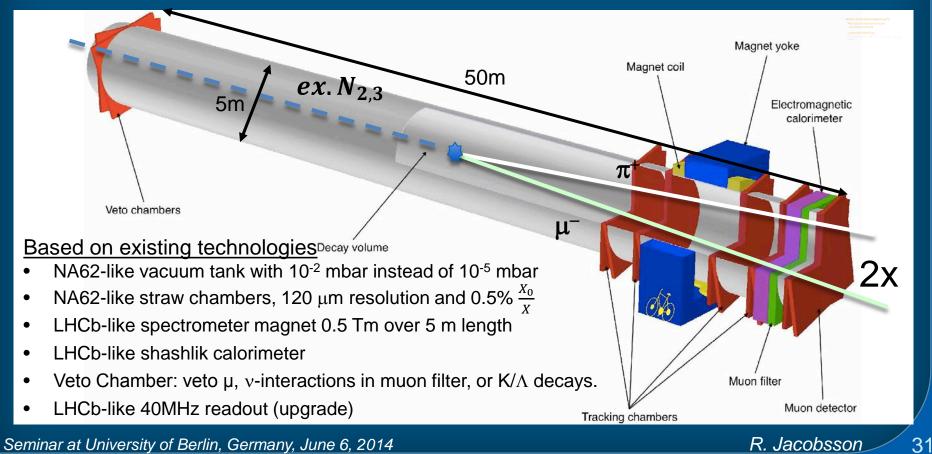
TDC2

Access Bld. 15m wide

HNL extraction MSSB211723 Splitters

TDC2

roan



CERN

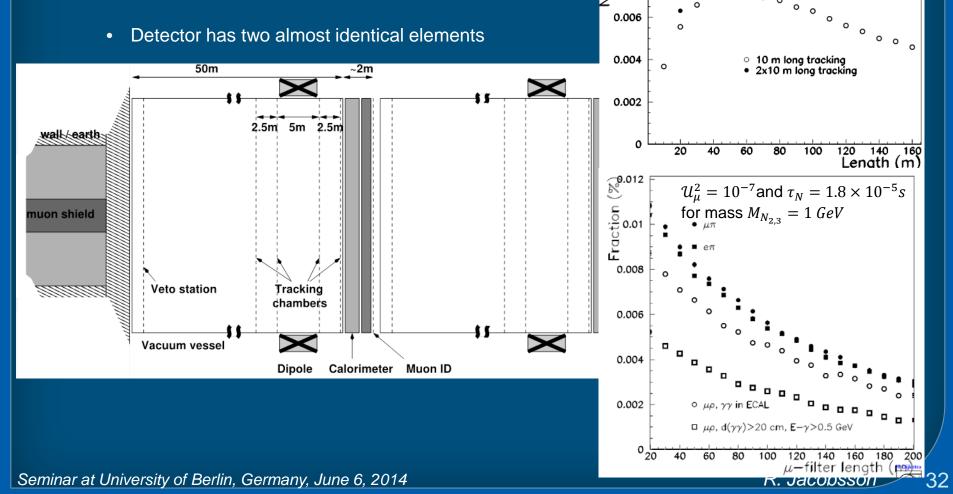
Detector Concept

- Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter in large hall
- Long vacuum vessel, 5 m diameter, 50 m length
- 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Detector Concept

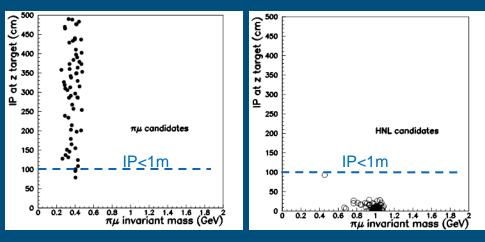
fraction (%) 0.01 0.01

0.008


КIJ

 \bigcirc

- Saturates for a given $N_{2,3}$ lifetime as a function of the detector length
- The use of two magnetic spectrometers increases the acceptance by 70%



Background Suppression

- 5^{-2} ×10⁴ neutrino interactions per 2×10²⁰ p.o.t. in the decay volume at atmospheric pressure
 - ➔ Becomes negligible at 0.01 mbar
- Neutrino (muon) interactions in the final part of the muon shield
 - $v_{\mu} + p \rightarrow X + K_{L} \rightarrow \mu \pi v$
 - Yields CC(NC) rate of ~6(2)×10⁵ / λ_{inter} / 2×10²⁰ p.o.t.
 - ~10% of neutrino interactions produce Λ or K^0 in acceptance
 - Majority of decays occur in the first 5 m of the decay volume
 - → Requiring μ -identification for one of the two decay products: 150 two-prong vertices in 2×10²⁰ p.o.t.
 - For 0.5 Tm field integral σ_{mass} ~ 40 MeV for p < 20 GeV

→ E.g. background reduction by impact parameter

- The IP cut will also be used to reject backgrounds induced by neutrino interactions in the material surrounding the detector, cosmics etc
- Similar for muon inelastic interactions in the vicinity of the detector

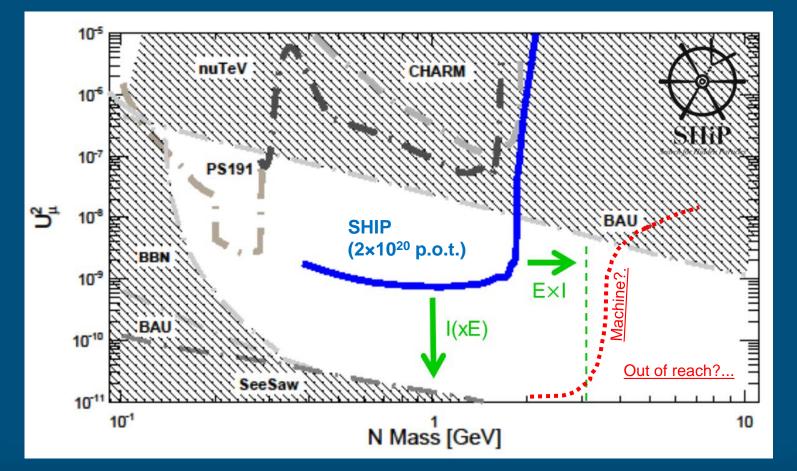
Seminar at University of Berlin, Germany, June 6, 2014

Expected Event Yield $N_{2,3} \rightarrow \mu \pi$

- Integral mixing angle $\mathcal{U}^2 = \mathcal{U}_e^2 + \mathcal{U}_\mu^2 + \mathcal{U}_\tau^2$
- A conservative estimate of the sensitivity is obtained by considering only the decay $N_{2,3} \rightarrow \mu \pi$ with production mechanism $D \rightarrow \mu N_{2,3} X$, which probes \mathcal{U}^4_{μ}
 - Benchmark model II with predominant muon flavour coupling (arXiv:0605047)
- Expected number of signal events

 $N_{signal} = n_{pot} \times 2\chi_{cc} \times Br(\mathcal{U}_{\mu}^{2}) \times \varepsilon_{det}(\mathcal{U}_{\mu}^{2})$

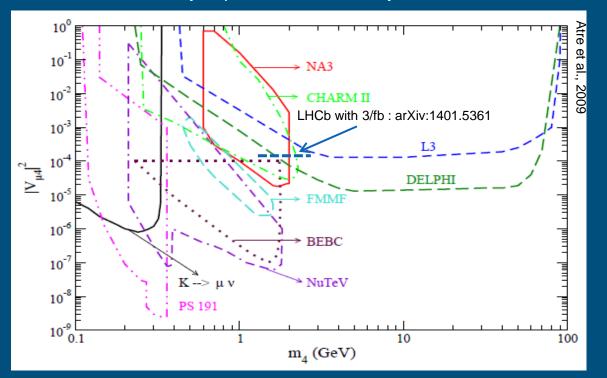
 $n_{pot} = 2 \times 10^{20}$ $\chi_{cc} = 0.45 \times 10^{-3}$


- $Br(\mathcal{U}^2_{\mu}) = Br(D \to \mu N_{2,3}X) \times Br(N_{2,3} \to \mu \pi),$
 - $Br(N_{2,3} \rightarrow \mu\pi)$ is assumed to be 20%
 - $Br(D \to NX) \sim 10^{-8} 10^{-12}$
- ε_{det}(U²_μ) is the probability that N_{2,3} decays in the fiducial volume, and μ and π are reconstructed
 → Detection efficiency entirely dominated by the geometrical acceptance (8 × 10⁻⁵ for τ_N = 1.8 × 10⁻⁵s)

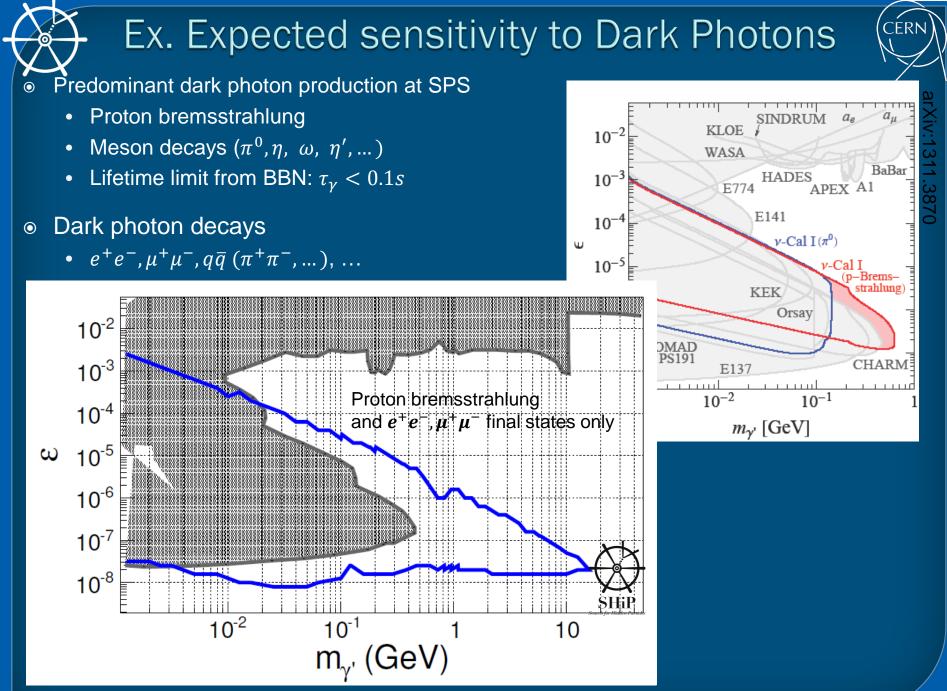
Ex. Expected Sensitivity to $N_{2,3} \rightarrow \mu \pi$

Sensitivity based on current SPS with 2x10²⁰ p.o.t in ~5 years of CNGS-like operation

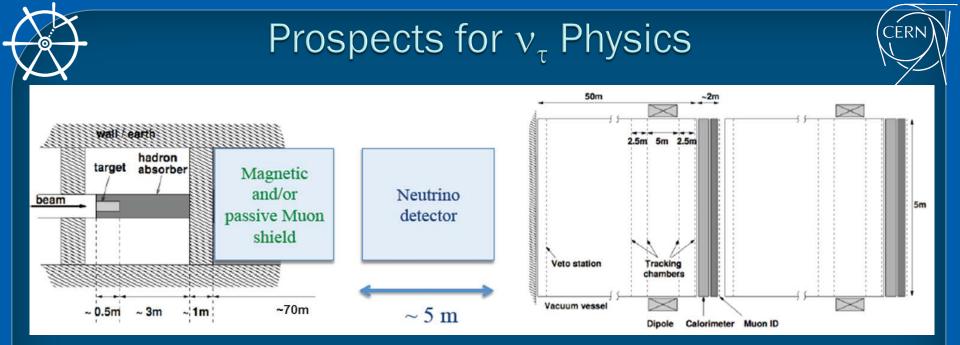
- Ex. $U_{\mu}^2 = 10^{-7}$ (corresponding to strongest current experimental limit for $M_{N_{2,3}} = 1 \text{ GeV}$) $(\tau_N = 18 \, \mu s)$
- → ~12k fully reconstructed $N_{2,3} \rightarrow \mu \pi$ events are expected for $M_{N_{2,3}} = 1 \text{ GeV}$
- → ~120 events for cosmologically favoured region: $U_{\mu}^2 = 10^{-8}$ and $\tau_N = 180 \ \mu s$



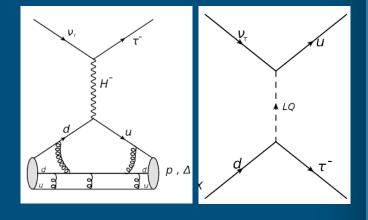
Sensitivity to $N_{2,3}$ - other experiments


- \rightarrow Colliders out of luck
- LHC (\sqrt{s} = 14 TeV): with 1 ab⁻¹, i.e. 3-4 years: ~ 2x10¹⁶ in 4 π
- SPS@400 ($\sqrt{s} = 27 \text{ GeV}$) with 2x10²⁰ pot, i.e. ~5 years: ~ 2x10¹⁷

Summary of past Searches for N_I



36


CERN

Seminar at University of Berlin, Germany, June 6, 2014

- Scaling from DONUT experiment expect ~3400 v_{τ} interactions in 6 tons of emulsion target
 - Tau neutrino and anti-neutrino physics
 - Charm physics with neutrinos and anti-neutrinos
 - Electron neutrino studies (high energy cross-section and v_e induced charm production (~1000 events)

- → Negligible loss of acceptance for Hidden Sector detector
- → Hidden Sector detector function as forward spectrometer for v_{τ} physics program
- → Use of calorimeter/muon detector allow tagging neutrino NC/CC interactions → normalization

Experiment Review Status

- Oct 2013: submitted our EOI: CERN-SPSC-2013-024 ; arXiv:1310.1762 ; SPSC-EOI-010
 - → Three referees appointed before the presentation, one more added since
 - → EOI stimulated a lot of interest, received a list of questions for next SPSC
- Jan 3, 2014: submitted document with answers to referees
 - → cern.ch/ship/EOI/SPSC-EOI-010_ResponseToReferees.pdf

• Jan 15, 2014: EOI discussed at SPSC

• Official feedback:

"The Committee **received with interest** the response of the proponents to the questions raised in its review of EOI010.

The SPSC **recognises** the interesting physics potential of searching for heavy neutral leptons and investigating the properties of neutrinos.

Considering the large cost and complexity of the required beam infrastructure as well as the significant associated beam intensity, such a project should be designed as a general purpose beam dump facility with the broadest possible physics programme, including maximum reach in the investigation of the hidden sector. To further review the project the Committee **would need** an extended proposal with further developed physics goals, a more detailed technical design and a stronger collaboration."

• Jan 31, 2014: Meeting with S. Bertolucci

- → Very supportive, proposed to present experiment at Extended Directorate
- → Proposed a task force to evaluate feasibility and required resources at CERN within ~3months
- → Supportive to the formation of a Collaboration and agreed to CERN signing

CERN Task force

Initiated by CERN Management after SPSC encouragement in January

Detailed investigation, feasibility, resources

- Physics motivation and requirements
- Experimental Area
- SPS configuration and beam time
- SPS beam extraction and delivery
- Target station
- Civil engineering
- Radioprotection
- → 90 pages
- Detailed cost and schedule

CERN CHI2111 Geneve 23		REV. 0.6 REMARK	VALIDITY DRAFT
Switzerland EN Engine	eering Department		Date: 2014-05-28
A new Experiment to Search for Hidden Particles (SHIP) at the SPS North Area Preliminary Project and Cost Estimate The scope of the recently proposed experiment Search for Heavy Neutral Leptons, EOI-010, includes a general Search for Hiddeo Particles (SHIP) as well as some aspects of reutrino physics. This report describes the implications of such an experiment for CERN.			
GOUMENT PREPARED EV: G.Arduini, M.Celviani, K.Comelis, L.Gatignon, B.Gaddard, A.Galutvin, R.Jacabsson, J. Osborne, S.Roeslar, T.Ruf, H.Viocka, H.Viocka	DOCUMENT CHECKED BY: S.Baird, O.Bairoing, L.S.Burnet, E.Ceonioi, B.S.Chiggisto, E.Duval, D.Endeel-With, 8.Janes, M.Jamoot, B.Jaxito, D.Missiasa, M.Nonis, L.Scibile, D.Jammasini,	abada. Mulimea	appaqved ev: . R.Lallian an L.Micalles a. S.Jrant

1st SHIP Workshop, June 10 – 12

cern.ch/ship/SHIP_workshop.html

• 2 x 0.5 days theory review / 2 x 0.5 days experimental facility and detector/computing

Registration and coffee - (12:30-13:30)	
Welcome - (13:30-13:40)	
time [id] title	presenter
13:30 [0] Welcome and opening of the workshop	STRAUMANN, Ueli
C1 Theoretical and experimental status of CM and pa	
S1 - Theoretical and experimental status of SM and per (13:40-14:40) time [id] title	presenter
(13:40-14:40)	
(13:40-14:40) time [id] title	presenter
(13:40-14:40) time [id] title 13:40 [1] Theory confronts the naturalness riddle	presenter ALTARELLI, Guido

ume	lial me	presenter
14:40	[5] Scalars and pseudo-scalars	BEZRUKOV, Fedor
15:10	[3] Dark photons	ANDREAS, Sarah
15:40	[4] Experimental sensitivity to dark photons	BRUNNER, Jurgen

S3 - Neutrino portal - (16:30-18:30)

Tuesday 10 June 2014

time [id] t	title	presenter
16:30 [6] T	he scale of see-saw and models for neutrino masses	Prof. LINDNER, Manfred
17:00 [7] E	expectations for properties of heavy neutral leptons from BSM physics	SHROCK, Robert
17:30 [8] P	Previous searches of heavy neutral leptons	ROZANOV, Alexandre
18:00 [9] S	Summary of constraints on heavy neutral leptons	PASCOLI, Silvia

Bar-storming Discussion - (21:30-22:30)

Seminar at University of Berlin, Germany, June 6, 2014

Wednesday 11 June 2014

S4 - Neutrino portal, continued - (08:30-10:30)

time [id] title	presenter
08:30 [10] Lepton number violation and heavy neutral leptons	HAMBYE, Thomas
09:00 [11] Overview of NuMSM	ASAKA, Takehiko
09:30 [12] Baryogenesis	GARBRECHT, Bjorn
10:00 [13] Heavy neutral leptons in cosmology and astrophysics	RUCHAYSKIY, Oleg

S5 - SUSY and BSM physics - (11:00-12:30)

time [id] title	presenter
11:00 [14] New physics in charm and bottom decays	ISIDORI, Gino
11:30 [15] R-parity violation and light neutralino	POROD, Werner
12:00 [16] Sgoldstino	Dr. GHILENCEA, Dumitru

Introduction to SHIP Detector - (13:30-13:55)

time [id] title	presenter
13:30 [17] Overall requirements and layout of SHIP	JACOBSSON, Richard

S6 - Experimental facility and infrastructure - (13:55-15:15)

time [id] title presenter	
13:55 [18] SPS configuration and beam transfer	Dr. GODDARD, Brennan
14:25 [19] Target complex	CALVIANI, Marco
14:50 [20] Muon shield	RUF, Thomas

The role of CERN in the diversity of physics programs - (15:15-15:45)

time [id] title	presenter
15:15 [21] The role of CERN in the diversity of physics programs	BERTOLUCCI, Sergio

Coffee break - (15:45-16:10)

<u>Cont'd</u>

1st SHIP Workshop, June 10 – 12 (cont'd)

/ednesday 11 June 2014 <u>Cont'd</u>	
S7 - Experimental facility and infrastructure, conti	<u>nued -</u> (16:10-17:00)
time [id] title	presenter
16:10 [22] Radiation protection aspects	VINCKE, Heinz
16:35 [23] Civil engineering	OSBORNE, John Andrew
<u>S8 - SHIP detector -</u> (17:00-18:40)	
time [id] title	presenter
17:00 [24] Spectrometer - Overview and requirements	FERRO-LUZZI, Massimiliano
Page 2	Wednesday 11 June 20
ist SHIF workshop / Frogramme	wednesday 11 June 20
17:20 [25] Straw tracker - a possible option	DANIELSSON, Hans
17:40 [26] Straw tracker - mechanics and manufacturing	MOVCHAN, Sergei
18:00 [27] Calorimeter	POLIAKOV, Vladimir
18:20 [28] Calorimeter electronics	VILLA, Mauro

Bar-storming discussion - (21:30-22:30)

Thursday 12 June 2014

S9 - SHIP detector, continued - (08:30-09:30)

time [id] title	presenter
08:30 [29] Muon detector – MWPC	LANFRANCHI, Gaia
08:50 [30] Muon detector – RPC	Dr. PAOLUCCI, Pierluigi
09:10 [31] Upstream tagger	BONIVENTO, Walter

S10 - Tau neutrino physics and detector - (09:30-10:00)

time [id]	title	presenter
09:30 [32]	The upstream detector for neutrino physics	DE LELLIS, Giovanni

Coffee break - (10:00-10:20)

S11 - Tau neutrino physics and detector - (10:20-11:20)

time [id] title	presenter
10:20 [33] Emulsions and scanning technologies	KOMATSU, Masahiro
10:40 [34] Silicon pixel detector	CASSE, Gianluigi
11:00 [35] Scintillating fibre tracker	TBC

S12 - Computing - (11:20-12:30)

time [id] title	presenter
11:20 [36] Readout architecture and trigger	DIJKSTRA, Hans
11:45 [37] Status of MC	RADEMAKERS, Fons
12:05 [38] Framework for computing	USTYZHANIN, Andrey

Workshop summary and conclusions - (12:30-13:00)

time [id] title	presenter
12:30 [39] Workshop Summary	GOLUTVIN, Andrei

Collaboration matters - (14:00-16:00)

Conclusions

- Proposed general purpose experiment for Hidden Sector exploration in largely unexplored domain
 - Very much increased interested for Hidden Sector after LHC Run 1
 - A very significant physics reach beyond past and current experiments in the cosmologically interesting region
 - Also unique opportunity for v_{τ} physics
- Further extension of complete physics program still ongoing
 - Very welcome to suggest searching for your favourite particle!
- The proposed experiment perfectly complements the searches for NP at the LHC
- Studies of the implementation of the experimental facility and resources in full swing as initiated by CERN management

Invitation to SHIP Workshop, June 10-12, Zurich University & & Invitation to join the SHIP Collaboration!

Seminar at University of Berlin, Germany, June 6, 2014

Seminar at University of Berlin, Germany, June 6, 2014

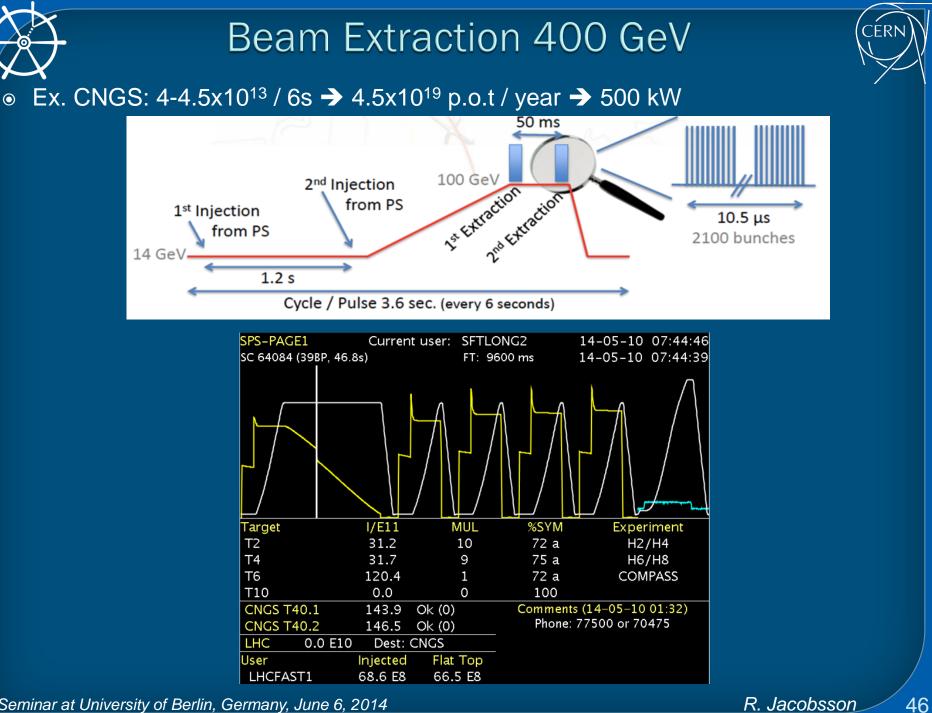
44

ERN

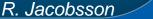
Exploration of Full Physics Program

- General Purpose (Beam) Dump: Explore sensitivities to
 - all less constraining "variants" of vMSM
 - all BSM models with HNLs
 - all models with light, very weakly interacting, long-lived "exotic" particles out of reach at LHC
 - Sensitive to the same physics as CHARM and LHCb → Longer lifetimes and smaller couplings
 - v_{τ} physics with additional upstream emulsion detector: 1500 2000 events expected

Examples with mass ~O(GeV) and production branching ratio ~ $O(10^{-10})$


→ Light super-goldstinos [Gorbunov, 2001] → $D \rightarrow \pi X, X \rightarrow \pi^+ \pi^-, \pi^0 \pi^0, l^+ l^-$

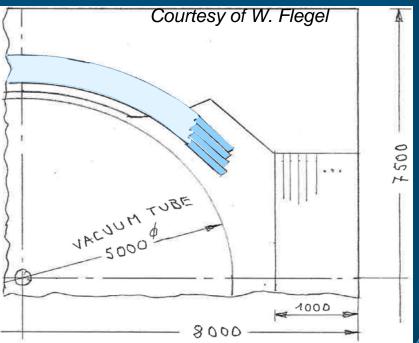
• $N_{\pi^+\pi^-}(N_{pot} = 2 \times 10^{20}) \cong 2 \times \left(\frac{1000 \, TeV}{\sqrt{F}}\right)^8 \left(\frac{M_{\lambda g}}{3 \, TeV}\right)^4 \left(\frac{m_X}{1 \, GeV}\right)^2$


- → R-parity violating neutralinos in SUSY [Dedes et al., 2001]
 → D → l \(\tilde{\chi}\), \(\tilde{\chi}\) → l⁺l⁻v
 - $N_{\mu^+\mu^-\nu}(N_{pot} = 2 \times 10^{20}) \cong 20 \times \left(\frac{m_{\tilde{\chi}}}{1 \text{ GeV}}\right)^6 \left(\frac{\lambda}{10^{-8}}\right)^2 \left(\frac{BR(D \to l\tilde{\chi})}{10^{-10}}\right)$, λ is R-violating coupling
- → Massive vectors in secluded dark matter models [Pospelov et al., 2008] "Paraphoton-like"
 - Production of γ' through bremsstrahlung, J/ ψ decay, $\gamma' \rightarrow l^+ l^-$

→ Specifying the full physics program is one of the main goals of the next few months

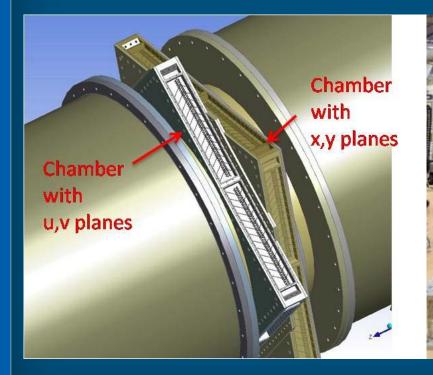
"Axion- and dilaton-like"

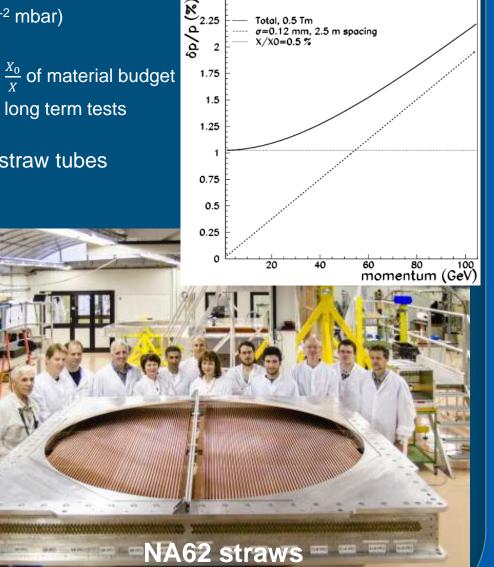
Seminar at University of Berlin, Germany, June 6, 2014



Detector Technologies

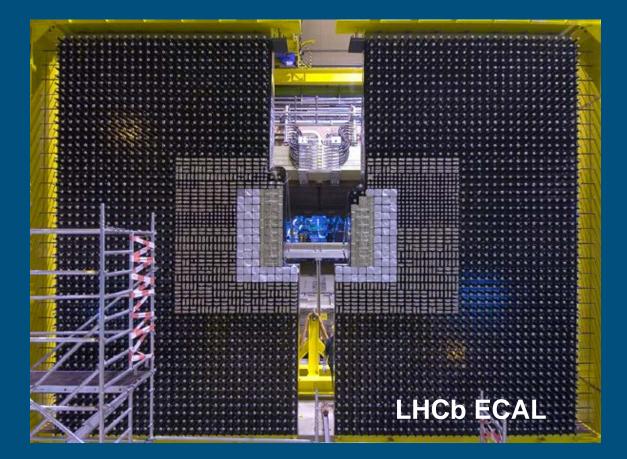
- Experiment requires a dipole magnet similar to LHCb design, but with ~40% less iron and three times less dissipated power
- Free aperture of ~ 16 m² and field integral of ~ 0.5 Tm •
 - Yoke outer dimension: 8.0×7.5×2.5 m³ •
 - Two Al-99.7 coils
 - Peak field ~ 0.2 T ۲
 - Field integral ~ 0.5 Tm over 5 m length •





Detector Technologies

- NA62 vacuum tank and straw tracker
 - < 10⁻⁵ mbar pressure in NA62 tank (cmp. 10⁻² mbar)
 - Straw tubes with 120 μ m resolution and 0.5% $\frac{X_0}{x}$ of material budget
 - Gas tightness of straw tubes demonstrated in long term tests
- Multiple scattering and spatial resolution of straw tubes give similar contribution to the overall $\frac{dP}{P}$



Seminar at University of Berlin, Germany, June 6, 2014

Detector Technologies

- LHCb electromagnetic calorimeter
- Shashlik technology provides economical solution with good energy and time resolution

