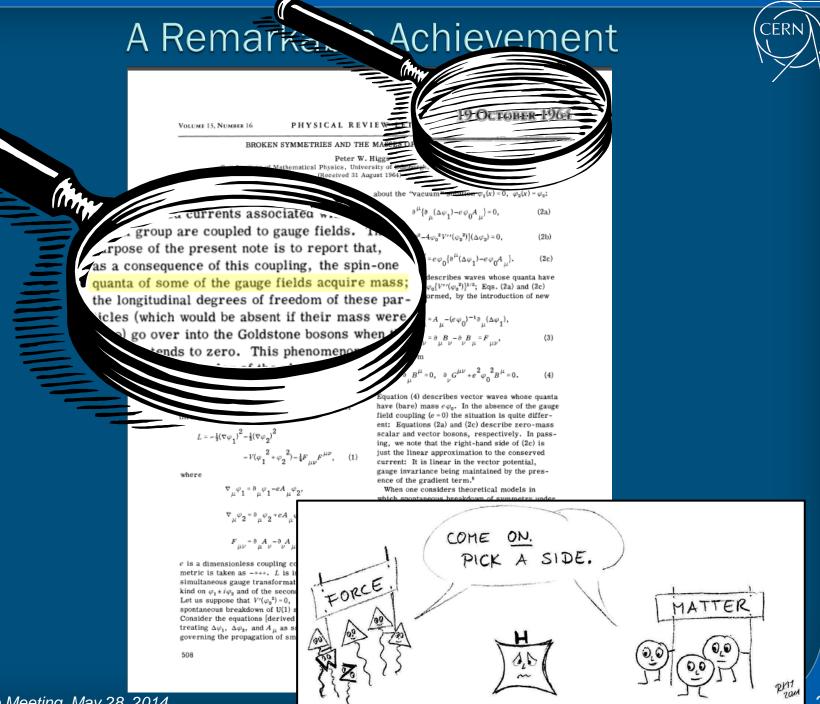

What is beyond the Standard Model? - Could it be hiding at the SPS? -

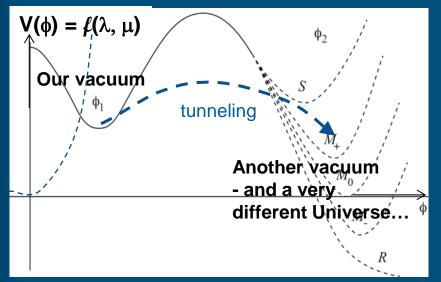
Richard Jacobsson


- Recapitulation of the results from LHC Run 1 (apologies to Alice!)
- Validity of the Standard Model
- Fundamental unanswered questions
- Possible solutions

Run 1: What did we find?

● ~1 - 5 Higgs per minute without us knowing!.... O(1 million) at production in total!

- ATLAS+CMS: 1400 Higgs events after selection cuts
- Mass of the Higgs is equivalent to the total mass of 130 protons!

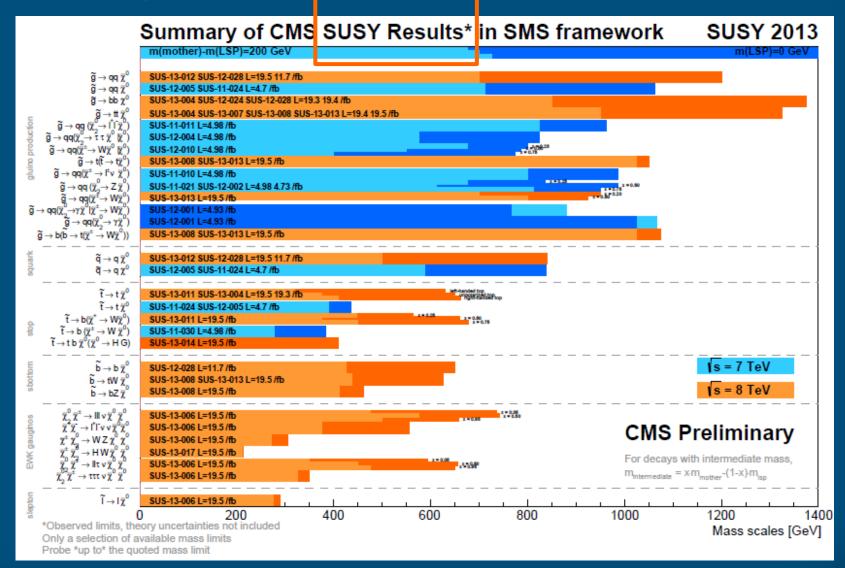

is *not* just the generation of mass of particles but


it is the breaking of the confinement to travel at the speed of light and allowing formation of complex structures!

ent: Equations (2a) and (2c) describe zero-mass $L = -\frac{1}{2} (\nabla \varphi_1)^2 - \frac{1}{2} (\nabla \varphi_2)^2$ scalar and vector bosons, respectively. In passing, we note that the right-hand side of (2c) is $-V(\varphi_1^2 + \varphi_2^2) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu},$ just the linear approximation to the conserved current: It is linear in the vector potential, gauge invariance being maintained by the preswhere ence of the gradient term.8 $\nabla_{\mu}\varphi_{1} = \partial_{\mu}\varphi_{1} - eA_{\mu}\varphi_{2}$ When one considers theoretical models in COME ON. - 8 A - 8 A PICK A SIDE. e is a dimensionless coupling co metric is taken as -+++. L is FORCE simultaneous gauge transformat kind on $\varphi_1 \pm i\varphi_2$ and of the secon Let us suppose that $V'(\varphi_n^2) = 0$, MATTER spontaneous breakdown of U(1) Consider the equations [derived treating $\Delta \varphi_1$, $\Delta \varphi_2$, and A_{μ} as s governing the propagation of sm 508 1.0 PION

Is our vacuum – the Universe - stable?

- Probably, but just with a hair fine margin!
 - At least up to now as we are here to talk about it!


• If not:

- A true vacuum could seed anywhere like a bubble and expand....
- The current laws of physics would be lost and replaced for another version of the same fields....

CÈRI

Run 1 Searches: What did we not find?

• LHC : A theory killer!

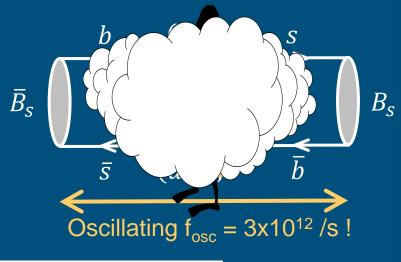
CERN

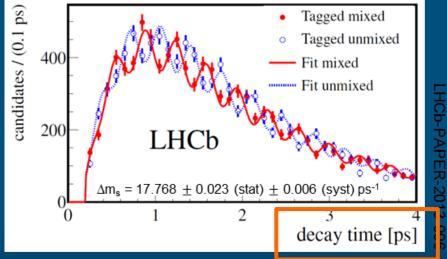
Run 1 Searches: What did we not find...?

	TL <mark>AS Exotics S</mark>	earch	es* -	95%	6 CL	Exclusion	ATL	AS Preliminary
Sta	atus: April 2014						$\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$	\sqrt{s} = 7, 8 TeV
	Model	ί, γ	Jets	E_T^miss	∫£ dt[fb	⁻¹] Mass limit	5	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell \ell / \gamma \gamma$ ADD QBH $\rightarrow \ell q$ ADD BH high N_{trk} ADD BH high $\sum p_T$ RS1 $G_{KK} \rightarrow \ell \ell$ RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q / \ell \ell \ell \ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b \bar{b} b \bar{b}$	$-$ $2\gamma \text{ or } 2e, \mu$ $1 e, \mu$ $2 \mu (SS)$ $\geq 1 e, \mu$ $2 e, \mu$ $2 \text{ or } 4 e, \mu$ $2 e, \mu$ $-$	1 j - ≥ 2 j - 2 j or - - 4 b	Yes Yes 	4.7 4.7 20.3 20.3 20.3 20.3 1.0 4.7 19.5	Mp 4.37 TeV Ms 4.18 TeV Mth 5.2 TeV Mth 6.2 TeV GKK mass 2.47 TeV GKK mass 1.23 TeV GKK mass 590-710 GeV		1210.4491 1211.1150 1311.2006 1308.4075 ATLAS-CONF-2014-016 ATLAS-CONF-2013-017 1203.0718 1208.2880 ATLAS-CONF-2014-005
	Bulk RS $g_{KK} \rightarrow t \overline{t}$ S^1/Z_2 ED UED	1 e,μ 2 e,μ 2 γ	≥ 1 b, ≥ 1J - -	/2j Yes – Yes	14.3 5.0 4.8	g _{KK} mass 0.5-2.0 TeV M _{KK} ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.41 TeV	BR = 0.925	ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{split} & \text{SSM } Z' \to \ell\ell \\ & \text{SSM } Z' \to \tau\tau \\ & \text{SSM } W' \to \ell\nu \\ & \text{EGM } W' \to WZ \to \ell\nu \ \ell'\ell' \\ & \text{LRSM } W'_R \to t \ \overline{b} \end{split}$	2 e,μ 2 τ 1 e,μ 3 e,μ 1 e,μ	– – – 2 b, 0-1 j	– Yes Yes Yes	20.3 19.5 20.3 20.3 14.3	Z' mass 2.66 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.84 TeV		ATLAS-CONF-2013-017 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 ATLAS-CONF-2014-015 ATLAS-CONF-2013-050
CI	Cl qqqq Cl qqℓℓ Cl uutt	_ 2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, ≥ 1	– – j Yes	4.8 5.0 14.3	Λ 7.6 Τε Λ Λ 3.3 TeV	V $\eta = +1$ 13.9 TeV $\eta_{LL} = -1$ C = 1	1210.1718 1211.1150 ATLAS-CONF-2013-051
MQ	EFT D5 operator EFT D9 operator		1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M. 731 GeV M. 2.4 TeV	at 90% CL for $m(\chi)$ < 80 GeV at 90% CL for $m(\chi)$ < 100 GeV	ATLAS-CONF-2012-147 1309.4017
Ъ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	(1 e, μ 2 e, μ	$\geq 2 \text{ b}, \geq 4$ $\geq 1 \text{ b}, \geq 3$ $\geq 2 \text{ b}$ $\geq 2 \text{ b}$ $\geq 1 \text{ b}, \geq 1$	j Yes	14.3 14.3 14.3 14.3	T mass790 GeVT mass670 GeVB mass725 GeVB mass720 GeV	T in (T,B) doublet isospin singlet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2013-056 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e,μ 2 e,μ,1 γ	1 j 2 j 1 b, 2 j or -	- - 1j Yes -	20.3 13.0 4.7 13.0	q* mass 3.5 TeV q* mass 3.84 TeV b* mass 870 GeV ℓ* mass 2.2 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2 \text{ TeV}$	1309.3230 ATLAS-CONF-2012-148 1301.1583 1308.1364
Other	LRSM Majorana v Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2 e,μ 2 e,μ 2 e,μ (SS) – –	2 j - - - -	- - - -	2.1 5.8 4.7 4.4 2.0	N ⁰ mass 1.5 TeV N [±] mass 245 GeV H ^{±+} mass 409 GeV multi-charaed particle mass 490 GeV monopole mass 862 GeV	$\begin{split} m(W_{\mathcal{R}}) &= 2 \text{ TeV, no mixing} \\ V_e =0.055, V_{\mu} =0.063, V_r =0 \\ \text{DY production, BR}(H^{\pm\pm} \to \ell\ell)=1 \\ \text{DY production, } a &= 4e \\ \text{DY production, } g &= 1g_D \end{split}$	1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 207.6411
$\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 10 Ma							¹⁰ Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phene

Run 1: Precision measurements?


Recipe:


- Choose processes which are rare and calculable to high precision in SM
 - → Indirectly find evidence for New Physics as discrepancy from SM prediction!
 - \rightarrow Virtual effects allow probing energies much higher than the $\rm E_{cms}$ of the LHC

Ex. B_s meson "adolescent identity problem"

 $\Phi_s^{exp} = \Phi_s^{SM} + \Phi_s^{NP}$

 Φ_s^{NP} contribution from New Physics

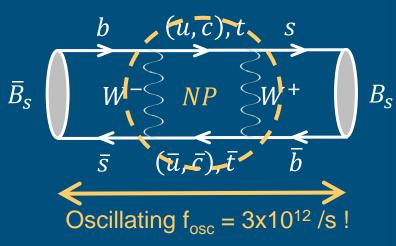
TE-ABT Group Meeting, May 28, 2014

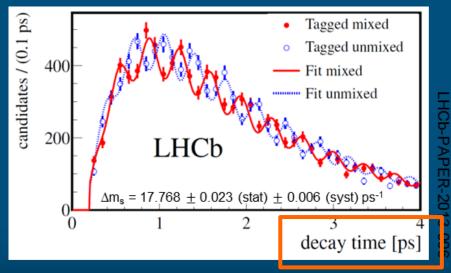
R. Jacobsson

Run 1: Precision measurements?

;?

CERN


Recipe:


- Choose processes which are rare and calculable to high precision in SM
 Indirectly find evidence for New Physics as discrepancy from SM prediction!
 - \rightarrow Virtual effects allow probing energies much higher than the E_{cms} of the LHC

Ex. B_s meson "adolescent identity problem"

 $\Phi_s^{exp} = \Phi_s^{SM} + \Phi_s^{NP}$

 Φ_s^{NP} contribution from New Physics

TE-ABT Group Meeting, May 28, 2014

R. Jacobsson

ĊĔŔŇ Run 1 Precision – What did we not find? $\sigma_{stat+sys+th} < \Phi_s^{NP}$ Push precisions! Proton decay LNV (neutrinos) LFV (muons) b→s FCNC present future

6

No new particles in sight up to 10^4 TeV with coupling to flavour!! = 10 000 x direct reach of LHC!

8

Log₁₀[A_i(GeV)]

18

Planck

Adapted by Jure Zupan from Fundamental Physics at

1205.2671; Cirigliano, Ramsey-

14

16

GUT

the Intensity Frontier

Mussolf 1304.0017

12

10

10

TE-ABT Group Meeting, May 28, 2014

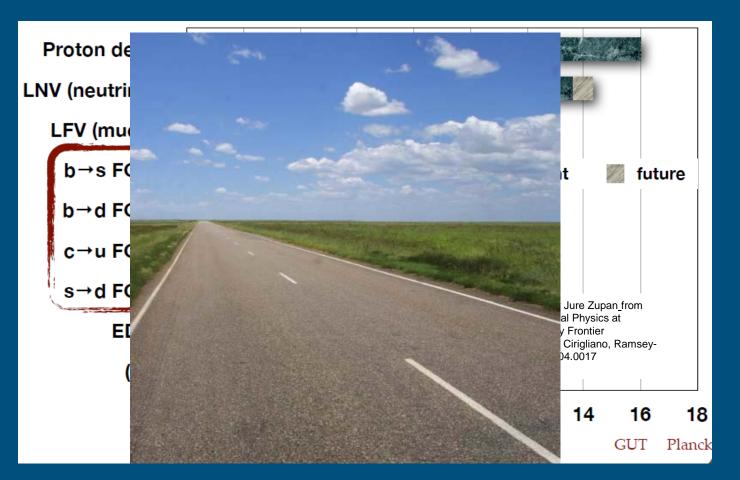
b→d FCNC

c→u FCNC

s→d FCNC

EDMs

(g-2)


0

2

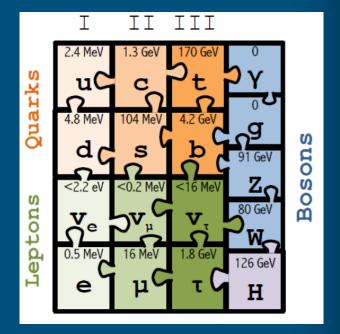
EWSB

R. Jacobsson

Run 1 Precision – What did we not find? Push precisions! $\sigma_{stat+sys+th} < \Phi_s^{NP}$

No new particles in sight up to 10^4 TeV with coupling to flavour!! = 10 000 x direct reach of LHC!

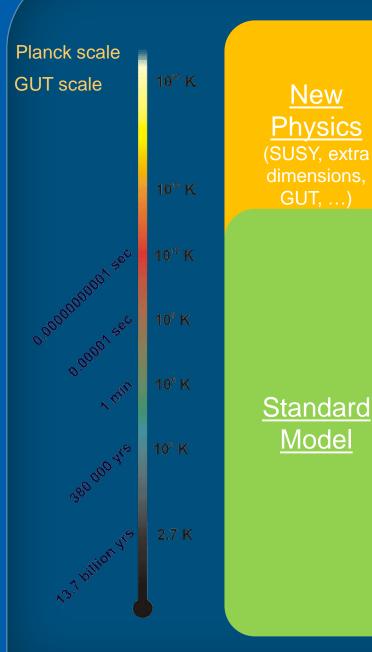
TE-ABT Group Meeting, May 28, 2014


11

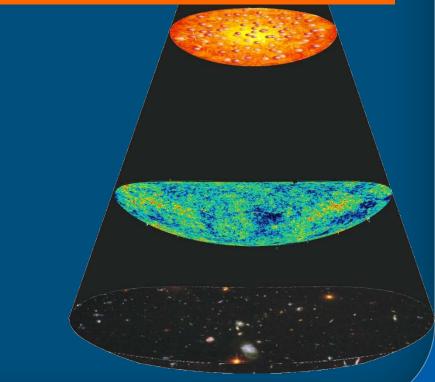
CÉRN

Universe 0 K – 10^{16} K++ in one formula?

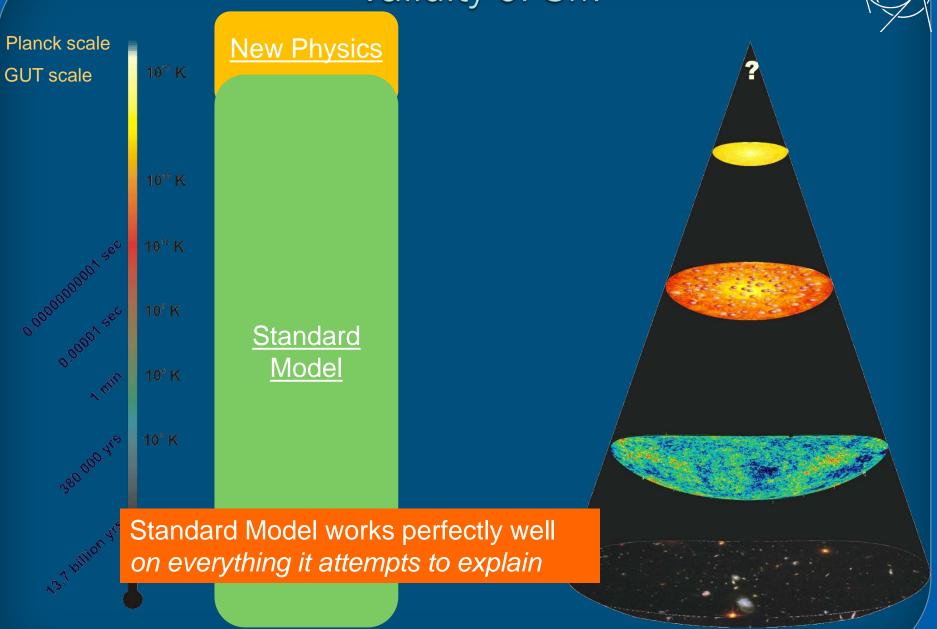
• So, is it just this simple...??


 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{B} \mathcal{Y} + h.c. \\ &+ \mathcal{Y}_i \mathcal{Y}_{ij} \mathcal{Y}_{j} \mathcal{P} + h.c. \end{aligned}$ $+ |\underline{D}_{\varphi}|^{2} - \vee (\phi)$

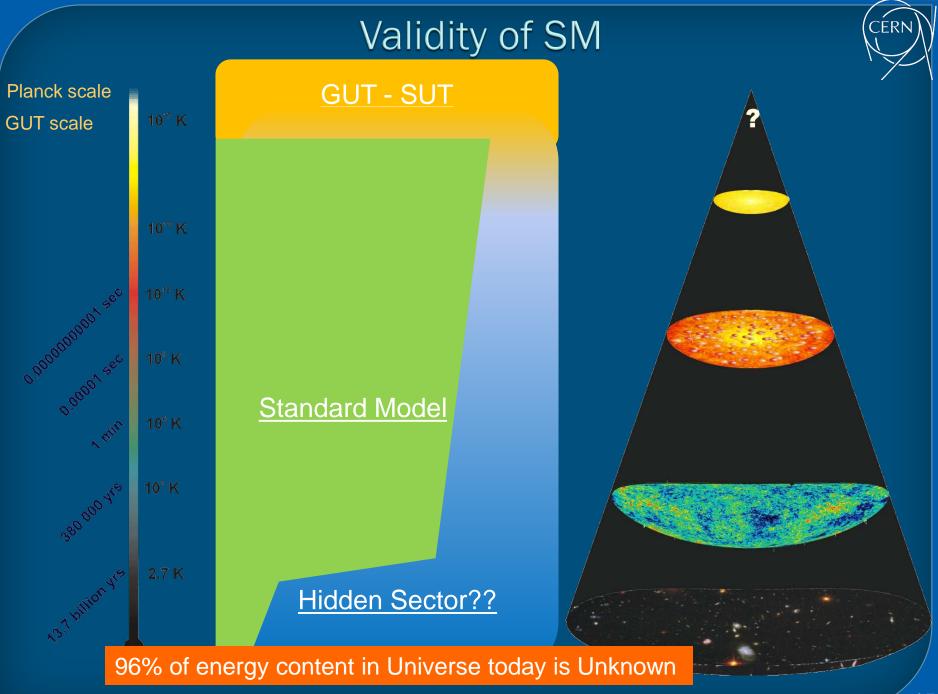
Validity of SM


<u>New</u>

Model



What we thought, or *hoped....* And still do...


ĊĔŔŇ

TE-ABT Group Meeting, May 28, 2014

CÈRI

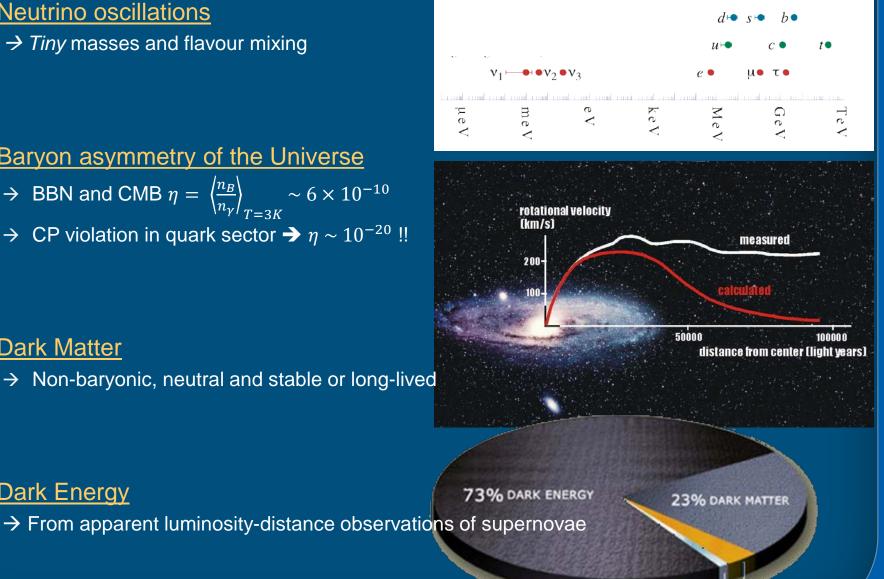
CERN Unresolved Experimental Evidence beyond SM

Neutrino oscillations \odot

→ Tiny masses and flavour mixing

Baryon asymmetry of the Universe \odot

 \rightarrow BBN and CMB $\eta = \left\langle \frac{n_B}{n_\gamma} \right\rangle_{T=3K} \sim 6 \times 10^{-10}$


→ CP violation in quark sector → $\eta \sim 10^{-20}$!!

Dark Matter \bigcirc

Dark Energy

 \bigcirc

 \rightarrow Non-baryonic, neutral and stable or long-lived

TE-ABT Group Meeting, May 28, 2014

CTIC/GAS 16

4% STARS, ETC

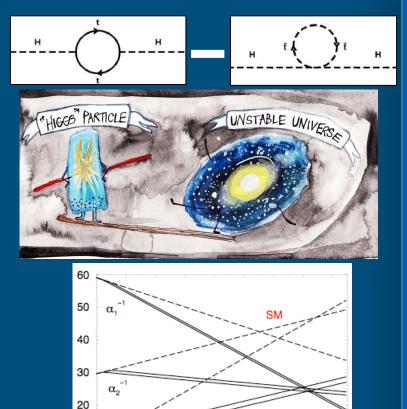
Unresolved Theoretical "Evidence" beyond SM

Prejudice...: "Universe is fine-tuned by chance or driven by obligation?"

Below GUT scale:

- <u>Hierarchy problem</u>
 - \rightarrow Stability of Higgs mass
- SM flavour structure
- Strong CP problem
 - In principle, strong interaction comes with a naturally large CP violation, why suppressed?
- Unification of coupling constants
- <u>Gravity</u>

Above GUT scale (next time!)

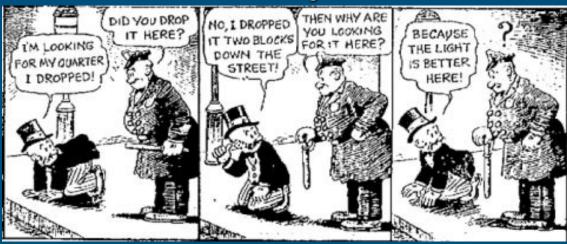

Event horizon problem, flatness, density variation which lead to structure formation,

While we had bounds for the Higgs, no hard evidence for the next scale....

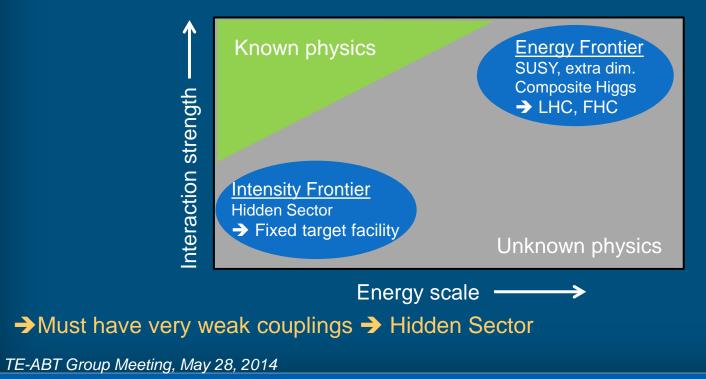
MSSM

18

Loa...(Q/1 GeV

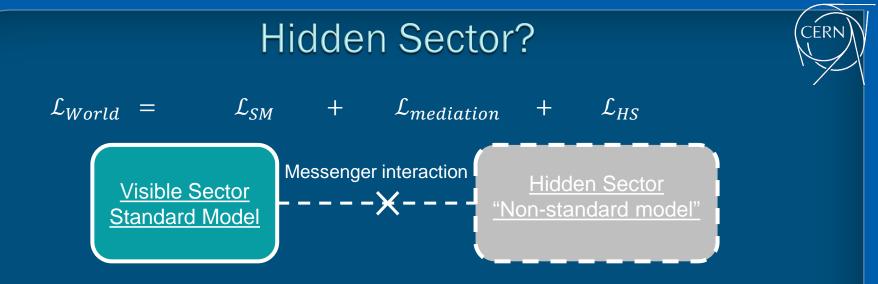


Why still SUSY searches in 2040++ ?


Indeed, even if fine-tuned, it makes our universe more likely "SUSY anywhere is better than SUSY nowhere"

Ellis

On the contrary - What if...?



What about solutions to (some) these questions below the mass of the W boson?

19

CERN

- Most Hidden Sector particles have none of the charges of SM, only make up mass! \odot
 - Hidden Sector may have their own charges and dynamics!

 Mirror World
- Some may have both SM and HS charges!
 - → "Portals" to the Hidden Sector !

- → Dynamics of Hidden Sector may drive dynamics of Visible Sector!
 - Dark Matter
 - Higgs mass
 - Neutrino oscillations
 - Baryon asymmetry
 - Dark Energy
 - Inflaton
 -

Examples of Portals to Hidden Sector

• Standard Model portals:

- D = 2: Vector portal
 - Kinetic mixing with massive dark/secluded/paraphoton V
 - → Interaction with 'mirror world' constituting dark matter

• D = 2: Higgs portal

• Mixing with dark scalar χ : $(\mu \chi + \lambda \chi^2) H^{\dagger} H$

Mass to Higgs boson and right-handed neutrino, and function as inflaton in accordance with Planck and BICEP measurements

 $\varepsilon F^{SM}_{\mu\nu}F^{\mu\nu}_{HS}$

• D = 5/2: Neutrino portal

• Mixing with right-handed neutrino N (Heavy Neutral Lepton): $YH^{\dagger}\overline{N}L$

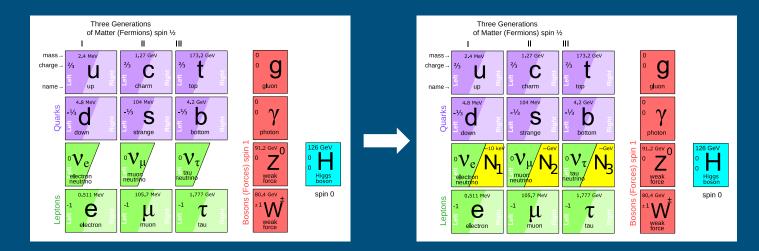
→ Neutrino oscillation, baryon asymmetry, dark matter

• D = 4: Axion porta

- Mixing with axion like particles, pseudo-scalars, axial vectors : $\frac{a}{F}G_{\mu\nu}\tilde{G}^{\mu\nu}$, $\frac{\partial_{\mu}a}{F}\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$, etc → Solve strong CP problem
- And higher dimensional operator portals and supersymmetric portals (light sgoldstino, light neutralino,...)

Common features of 'Portals' to Hidden Sector

"Direct detection" through both portals in and out:


- Cosmologically interesting and accessible m_{HS}~ O(MeV GeV)
 → Production through meson decays (π, K, D, B)
 → Decay to l⁺l⁻, π⁺π⁻, lπ, lρ, γγ, etc
- Production and decay rates are very suppressed relative to SM.
 - Production branching ratios $\mathcal{O}(10^{-10})$
 - Long-lived objects
 - Travel unperturbed through *ordinary* matter
- → Fixed-target experiment
 - → Large number of protons on target and large decay volume!

→ Complementary physics program to searches for new physics by LHC!

TE-ABT Group Meeting, May 28, 2014

Ex. Right-handed Majorana neutrinos

• Ex. vMSM with Heavy Neutral Leptons by Asaka and Shaposhnikov

Role of N_1 with a mass of $\mathcal{O}(\text{keV})$ \rightarrow Dark Matter

Role of N_2 and N_3 with a mass of $\mathcal{O}(m_q/m_{l^{\pm}})$ (100 MeV – GeV): → Neutrino oscillations and mass, and matter-antimatter asymmetry

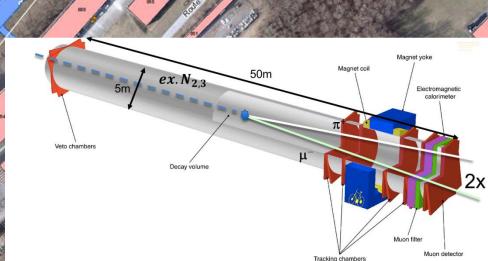
Simple extension and no new energy scale!

Shafts + Tunnel access

Beam Line

Service Bld. 15m wide

TD

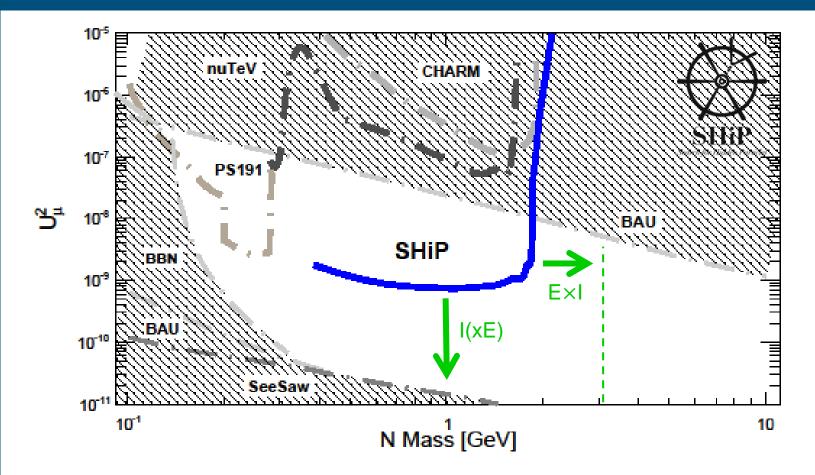

Access Bld 15m wide

TDC2

Access Bld.

20m wide

HNL extraction MSSB211723 Splitter

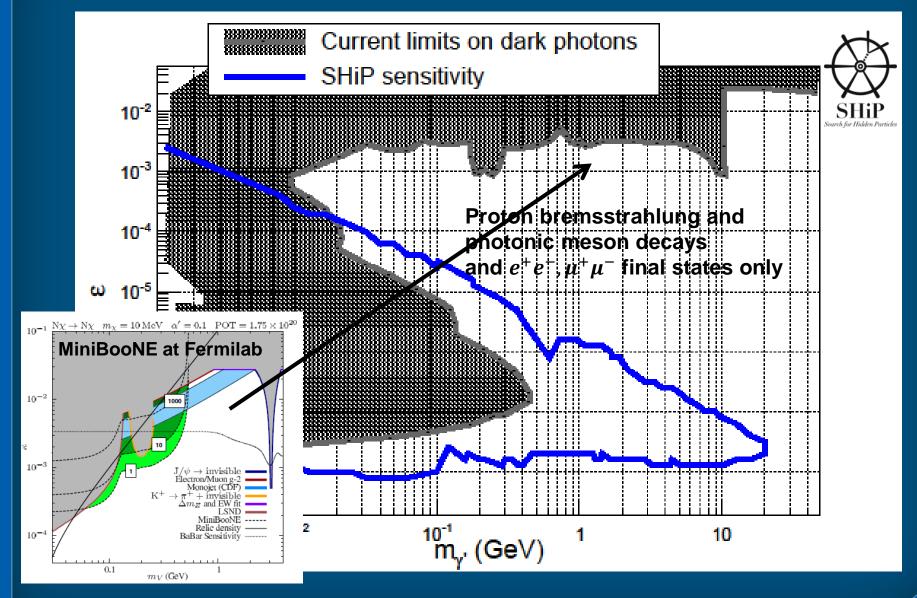


FARGET HALL

20m wide

Ex. Expected Sensitivity to $N_{2,3} \rightarrow \mu \pi$

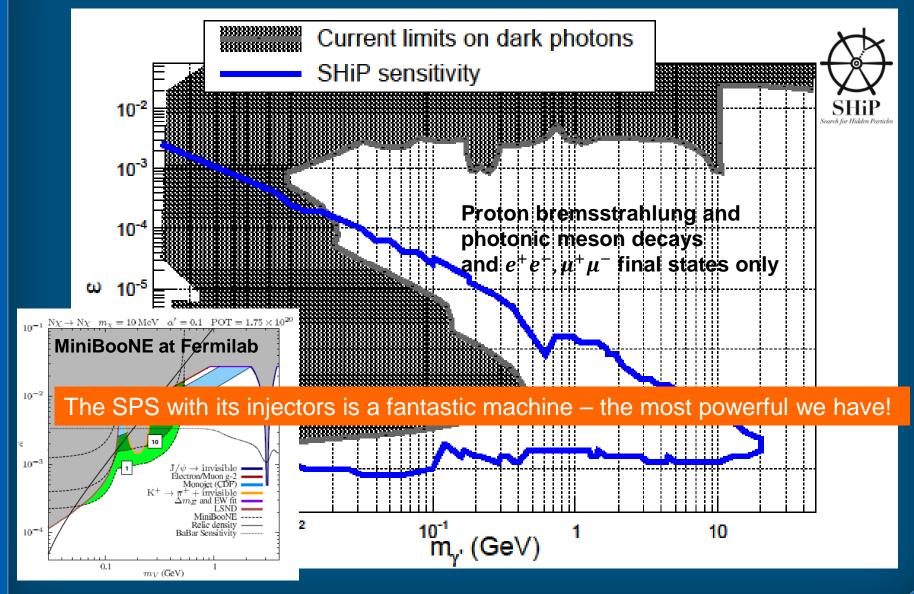
Sensitivity based on current SPS with 2x10²⁰ p.o.t in ~5 years of CNGS-like operation


 \rightarrow Colliders out of luck

- LHC (\sqrt{s} = 14 TeV): with 1 ab⁻¹, i.e. 3-4 years: ~ 2x10¹⁶ in 4 π
- SPS@400 ($\sqrt{s} = 27 \text{ GeV}$) with 2x10²⁰ pot, i.e. ~5 years: ~ 2x10¹⁷

TE-ABT Group Meeting, May 28, 2014

Ex. Expected sensitivity to Dark Photons



TE-ABT Group Meeting, May 28, 2014

Ex. Expected sensitivity to Dark Photons

TE-ABT Group Meeting, May 28, 2014

We worried about finding just a Standard Model Higgs....

ERI

We worried about finding just a Standard Model Higgs....

...but taking all experimental results together with the remarkable progress in cosmological observations and theory makes the situation even more intriguing!

We worried about finding just a Standard Model Higgs....

...but taking all experimental results together with the remarkable progress in cosmological observations and theory makes the situation even more intriguing!

• The future requires a very open strategy and multiple points of attack!

- Continued searches with the opening of a new energy domain at ~13 TeV
- Precision measurements of Higgs and the top quark
- Precision measurements in flavour physics ...and...
- Searches for a Hidden Sector!
- SPS is the most powerful machine there is around
- However, it remains clear, whatever is found or not found will require
 - Future colliders
 - ...and...
 - Future (fast cycling!) injectors for fixed target experiments!

We worried about finding just a Standard Model Higgs....

...but taking all experimental results together with the remarkable progress in cosmological observations and theory makes the situation even more intriguing!

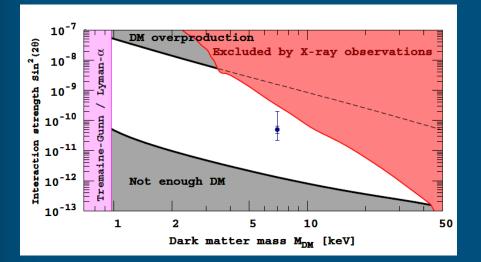
Let's not run out of fuel!

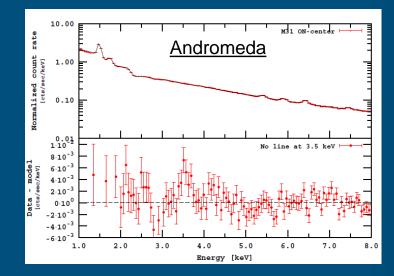
- The future requi
 - Continued sea
 - Precision mea
 - Precision mea
 ...and...
 - Searches for a
- SPS with its inje
- However, it rem
 - Future colliders
 - ...and...
 - Future (fast cycling!) injectors for fixed target experiments!

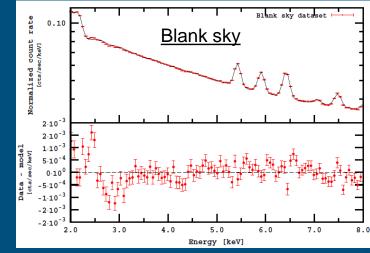
attack!

- ound
- require

Reserve


TE-ABT Group Meeting, May 28, 2014




Intriguing hints from galaxy spectrum?

• Two recent publications:

- → arXiv:1402.2301 : Detection of an unidentified emission line in the stacked XMM-Newton X-ray spectra of Galaxy Clusters at $E_{\gamma} \sim (3.55 - 3.57) \pm 0.03 keV$
- → arXiv:1402.4119 : An unidentified line in the X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster at $E_{\gamma} \sim 3.5 \ keV$

Confirmation by Astro-H with better energy resolution required